NVIDIA NvNeural SDK
2022.2
GPU inference framework for NVIDIA Nsight Deep Learning Designer
|
All CUDA helper functions and structs are declared here. More...
#include <nvneural/CudaTypes.h>
#include <nvneural/CoreHelpers.h>
#include <cassert>
#include <cuda_runtime_api.h>
Go to the source code of this file.
Macros | |
#define | CheckCudaDriverErrors(status_) |
CheckCudaDriverErrors is an error-handling macro. More... | |
#define | CheckCudartErrors(status_) |
CheckCudartErrors is an error-handling macro. More... | |
Functions | |
NeuralResult | nvneural::CheckCudaDriverErrors_Impl (CUresult status, const char file[], int line) |
Implementation function for CheckCudaDriverErrors. More... | |
NeuralResult | nvneural::CheckCudartErrors_Impl (cudaError_t status, const char file[], int line) |
Implementation function for CheckCudartErrors. More... | |
Variables | |
const size_t | nvneural::STANDARD_CUDA_BLOCK_SIZE = 32 |
A commonly used Cuda Thread Block size. More... | |
All CUDA helper functions and structs are declared here.
#define CheckCudaDriverErrors | ( | status_ | ) |
CheckCudaDriverErrors is an error-handling macro.
It returns NeuralResult::Failure from the caller if the provided CUresult expression evaluates to anything but CUDA_SUCCESS.
Use this for CUDA driver API calls.
#define CheckCudartErrors | ( | status_ | ) |
CheckCudartErrors is an error-handling macro.
It returns NeuralResult::Failure from the caller if the provided cudaError_t expression evaluates to anything but cudaSuccess.
Use this for CUDA runtime API calls.
|
inline |
Implementation function for CheckCudaDriverErrors.
status | CUDA driver result to check |
file | Filename holding the check |
line | Line number of the check |
|
inline |
Implementation function for CheckCudartErrors.
status | CUDA runtime result to check |
file | Filename holding the check |
line | Line number of the check |
const size_t nvneural::STANDARD_CUDA_BLOCK_SIZE = 32 |
A commonly used Cuda Thread Block size.
This block size is in no way mandatory. Users are encouraged to use whatever launch scheme makes the most sense for their kernel and target hardware.