VPI - Vision Programming Interface

0.1.0 Release

Image Convolver

Overview

Image convolver algorithm performs a 2D convolution operation on the input image with the provided 2D kernel. This is useful when the kernel isn't separable and its dimensions are smaller than 5x5. In other cases, it's usually preferable to use the separable image convolver algorithm due to its speed.

Input Kernel Output

\[ \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \]


Implementation

Discrete 2D convolution is implemented using the following discrete function:

\[ I'[x,y] = \sum_{m=0}^{k_h} \sum_{n=0}^{k_w} K[m,n] \times I[x-(n-\lfloor k_w/2 \rfloor), y-(m-\lfloor k_h/2 \rfloor) ] \]

Where:

  • \(I\) is the input image.
  • \(I'\) is the result image.
  • \(K\) is the convolution kernel.
  • \(k_w,k_h\) are the kernel's width and height, respectively.
Note
Most computer vision libraries expect the kernel to be reversed before calling their convolution functions. Not so with VPI, we implement an actual convolution, not cross-correlation. Naturally, this is irrelevant if the kernel is symmetric.

Usage

  1. Initialization phase
    1. Include the header that defines the needed functions and structures.
    2. Define the stream on which the algorithm will be executed, the input and output images.
      VPIStream stream = /*...*/;
      VPIImage input = /*...*/;
    3. Create the output image.
      uint32_t w,h;
      vpiImageGetSize(input, &w, &h);
      vpiImageGetType(input, &type);
      VPIImage output;
      vpiImageCreate(w, h, type, 0, &output);
  2. Processing phase
    1. Define the kernel to be used. In this case, a simple 3x3 edge detector.
      float kernel[3*3] = {1,0,-1,
      0,0,0,
      -1,0,1};
    2. Submit the algorithm to the stream, passing the kernel, input, output images and boundary condition.
      vpiSubmitImageConvolver(stream, input, output, kernel, 3, 3, VPI_BOUNDARY_COND_ZERO);
    3. Optionally, wait until the processing is done.
      vpiStreamSync(stream);

Consult the Image Convolution for a complete example.

Limitations and Constraints

Constraints for specific backends supersede the ones specified for all backends.

All Backends

PVA

  • Input and output dimensions must be between 65x33 and 3264x2448.
  • Minimum convolution kernel size is 2x2.
  • Maximum convolution kernel size is 11x11 by default, but for image types VPI_IMAGE_TYPE_Y8 and VPI_IMAGE_TYPE_Y8I, kernel must have at most 49 elements.
  • Kernel weights are restricted to \(|weight| < 1\)
  • Only VPI_BOUNDARY_COND_ZERO is accepted.

Known Issues

  • PVA backend implemention may return invalid results if the input kernel isn't normalized. For this reason, 2D Image Convolution sample application returns a black image when run with the PVA backend. As a workaround, try to use Separable Image Convolver for PVA if possible, or use the CUDA backend.
ImageConvolver.h
VPIImageType
VPIImageType
Image formats.
Definition: Types.h:172
vpiStreamSync
VPIStatus vpiStreamSync(VPIStream stream)
Blocks the calling thread until all submitted commands in this stream queue are done (queue is empty)...
vpiSubmitImageConvolver
VPIStatus vpiSubmitImageConvolver(VPIStream stream, VPIImage input, VPIImage output, const float *kernelData, uint32_t kernelWidth, uint32_t kernelHeight, VPIBoundaryCond boundary)
Runs a generic 2D convolution over an image.
VPIImage
struct VPIImageImpl * VPIImage
Definition: Types.h:153
vpiImageGetSize
VPIStatus vpiImageGetSize(VPIImage img, uint32_t *width, uint32_t *height)
Get the image size in pixels.
vpiImageGetType
VPIStatus vpiImageGetType(VPIImage img, VPIImageType *type)
Get the image type.
vpiImageCreate
VPIStatus vpiImageCreate(uint32_t width, uint32_t height, VPIImageType type, uint32_t flags, VPIImage *img)
Create an empty image instance with the specified flags.
VPI_BOUNDARY_COND_ZERO
All pixels outside the image are considered to be zero.
Definition: Types.h:204
VPIStream
struct VPIStreamImpl * VPIStream
Definition: Types.h:147