NVIDIA AI Enterprise and NVIDIA vGPU (C-Series)#

NVIDIA AI Enterprise offers a flexible licensing mechanism delivered through a comprehensive software suite designed for enterprise-grade AI. This suite combines infrastructure tools, application frameworks, libraries, and NVIDIA Integrated Management (NIM) software, streamlining the deployment of AI workloads across various environments. This approach helps organizations tailor AI solutions to specific requirements, maximizing performance and scalability without the need for multiple dedicated GPU resources.

NVIDIA vGPU (C-Series) drivers are one of the deployment approaches supported by NVIDIA AI Enterprise in virtualized environments. NVIDIA vGPU (C-Series) extends the capabilities of NVIDIA AI Enterprise by enabling AI and machine learning tasks to run in virtual machines that share GPU resources. This allows AI tasks to maximize GPU utilization while supporting multiple users, making it easier to handle dynamic workloads on local servers or in the cloud. By leveraging vGPU (C-Series) within NVIDIA AI Enterprise, organizations can confidently scale their AI infrastructure and integrate advanced computing power into existing virtualization strategies.

Key Concepts#

vGPU (C-Series)#

NVIDIA Virtual GPU (C-Series) accelerates AI and ML workloads by enabling multiple virtual machines to have simultaneous, direct access to a single physical GPU while maintaining the high-performance compute capabilities required for complex model training, inference, and data processing. By distributing GPU resources dynamically and efficiently across multiple VMs, vGPU (C-Series) optimizes utilization and lowers overall hardware costs, making it especially beneficial for large-scale and rapidly evolving AI environments.

NVIDIA vGPU (C-Series) Virtual GPU Manager#

The NVIDIA vGPU (C-Series) Virtual GPU Manager enables GPU virtualization by allowing multiple virtual machines (VMs) to share a physical GPU, optimizing GPU allocation for different workloads. The NVIDIA AI Enterprise host driver, also known as the NVIDIA vGPU (C-Series) Virtual GPU Manager, is installed on the hypervisor, is hypervisor specific,and is best suited for running AI and machine learning workloads in virtualized environments by optimizing GPU performance for tasks like deep learning, model training, and inference. It’s part of the NVIDIA AI Enterprise software, which is designed for deep learning, data science, and other high-performance computing in virtual environments.

The NVIDIA vGPU (C-Series) Virtual GPU Manager packages can be downloaded from the NGC Catalog.

NVIDIA vGPU (C-Series) Driver#

The NVIDIA vGPU (C-Series) Driver is installed on each VM’s operating system, allowing the VM to fully leverage the virtualized GPU resources. It works with the NVIDIA vGPU (C-Series) Virtual GPU Manager to ensure resource sharing and isolation. The NVIDIA vGPU (C-Series) Driver maintains a consistent, high-performance computing experience for AI and ML workloads, streamlining the deployment and management of GPU-accelerated applications within virtualized environments run AI workloads on vGPU powered VMs in virtualized environments. It’s part of the NVIDIA AI Enterprise software, which is designed for deep learning, data science, and other high-performance computing in virtual environments.

The NVIDIA vGPU (C-Series) Driver packages can be downloaded from the NGC Catalog.

Features#

Below are the key features that highlight the capabilities and benefits of NVIDIA vGPU (C-Series), designed to work alongside NVIDIA AI Enterprise, and optimize performance and efficiency across various use cases.

GPU Virtualization for Multiple VMs and Containers

NVIDIA vGPU (C-Series) lets multiple virtual machines (VMs) or containers share one physical GPU. This means you can distribute GPU power to different tasks (like AI, machine learning, or data processing) without needing a separate GPU for each task, making better use of the available hardware.

vGPU (C-Series) also supports a multi-GPU scenario by enabling multiple GPUs to be assigned to a single VM for larger models and increasingly demanding workflows.

Scalability and High User Density

NVIDIA vGPU (C-Series) allows many users or tasks to use GPU resources at the same time, which is perfect for cloud setups, virtual desktops, and shared AI environments. This makes it easier for AI businesses to support lots of users or applications without needing extra hardware.

High-Performance GPU Acceleration

With NVIDIA vGPU (C-Series), you can use GPU power for demanding tasks like deep learning, training models, and data analysis. This helps AI and machine learning tasks run much faster compared to using just the CPU.

Flexible Resource Allocation

NVIDIA vGPU (C-Series) lets businesses control how GPU resources are distributed. Admins can assign specific amounts of GPU memory and processing power to different VMs or containers, making sure each task gets the right amount of resources. This flexibility helps improve efficiency and reduce costs.

Multi-Workload Support

NVIDIA vGPU (C-Series) can handle many types of tasks, from graphics rendering for remote workstations to AI/ML and high-performance computing. This flexibility is important for NVIDIA AI Enterprise customers who need to run different demanding applications on the same system.

Support for AI Frameworks and Libraries

NVIDIA vGPU (C-Series) works smoothly with popular AI tools like TensorFlow, PyTorch, and MXNet, boosting performance for deep learning tasks. This helps NVIDIA AI Enterprise customers fully use GPU power for AI and ML, making their work faster and more efficient.

Cloud and Data Center Optimization

NVIDIA vGPU (C-Series) lets both on-premises data centers and cloud environments make full use of GPU resources. Customers can set up AI systems in hybrid or multi-cloud setups, ensuring GPU resources are well-distributed, which helps manage and scale AI workloads more easily in the cloud.

MIG-Backed NVIDIA vGPUs

With MIG-backed NVIDIA vGPU (C-Series), a physical GPU can be split into smaller, separate parts. This lets businesses assign different amounts of GPU power to various tasks, so less demanding AI tasks can run smoothly while still giving more power to bigger tasks. This feature is especially useful in shared, cloud, or mixed environments.

FAQs#

Q: What is the difference between time-sliced vGPUs and MIG-backed vGPUs?

A: Time-sliced vGPUs and MIG-backed vGPUs are two different approaches to sharing GPU resources in virtualized environments. Here are the key differences:

Differences Between Time-Sliced and MIG-Backed vGPUs#

Time-sliced vGPUs

MIG-backed vGPUs

Share the entire GPU among multiple virtual machines (VMs).

Partition the GPU into smaller, dedicated instances.

Each vGPU gets full access to all streaming multiprocessors (SMs) and engines, but only for a specific time slice.

Each vGPU gets exclusive access to a portion of the GPU’s memory and compute resources.

Processes run in series, with each vGPU waiting while others use the GPU.

Processes run in parallel on dedicated hardware slices.

The number of VMs per GPU is limited only by framebuffer size.

Depending on the number of MIG instances supported on a GPU, this can range from 4 to 7 VMs per GPU.

Better for workloads that require occasional bursts of full GPU power.

Provides better performance isolation and more consistent latency.

Release Notes#

Prerequisites#

Using NVIDIA vGPU (C-Series)#

Because the NVIDIA vGPU (C-Series) has large BAR memory settings, using these vGPUs has some restrictions on VMware ESXi.

Using NVIDIA vGPU (C-Series) on GPUs Requiring 64GB or More of MMIO Space with Large-Memory VMs#

Some GPUs require 64GB or more of MMIO (Memory-Mapped I/O) space. When a vGPU on a GPU that requires 64GB or more of MMIO space is assigned to a VM with 32GB or more of memory on ESXi, the VM’s MMIO space must be increased to the amount that the GPU requires.

For more information, refer to the VMware Knowledge Base Article: VMware vSphere VMDirectPath I/O: Requirements for Platforms and Devices (2142307).

No extra configuration is needed.

The following table lists the GPUs that require 64GB or more of MMIO space and the amount of MMIO space that each GPU requires.

Requirements for Using NVIDIA vGPU (C-Series) on GPUs Requiring 64GB or More of MMIO Space with Large-Memory VMs#

GPU

MMIO Space Required

NVIDIA H200 (all variants)

512GB

NVIDIA H100 (all variants)

256GB

NVIDIA H800 (all variants)

256GB

NVIDIA H20 141GB

512GB

NVIDIA H20 96GB

256GB

NVIDIA L40

128GB

NVIDIA L20

128GB

NVIDIA L4

64GB

NVIDIA L2

64GB

NVIDIA RTX 6000 Ada

128GB

NVIDIA RTX 5000 Ada

64GB

NVIDIA A40

128GB

NVIDIA A30

64GB

NVIDIA A10

64GB

NVIDIA A100 80GB (all variants)

256GB

NVIDIA A100 40GB (all variants)

128GB

NVIDIA RTX A6000

128GB

NVIDIA RTX A5500

64GB

NVIDIA RTX A5000

64GB

Quadro RTX 8000 Passive

64GB

Quadro RTX 6000 Passive

64GB

Tesla V100 (all variants)

64GB

Platform Support#

Microsoft Windows Guest Operating Systems#

NVIDIA AI Enterprise supports only the Tesla Compute Cluster (TCC) driver model for Windows guest drivers.

Windows guest OS support is limited to running applications natively in Windows VMs without containers. NVIDIA AI Enterprise features that depend on the containerization of applications are not supported on Windows guest operating systems.

If you are using a generic Linux supported by the KVM hypervisor, consult the documentation from your hypervisor vendor for information about Windows releases supported as a guest OS.

For more information, refer to the Non-containerized Applications on Hypervisors and Guest Operating Systems Supported with vGPU table.

NVIDIA vGPU (C-Series) Migration#

NVIDIA vGPU (C-Series) Migration, which includes vMotion and suspend-resume, is supported for both time-sliced and MIG-backed vGPUs on all supported GPUs and guest operating systems but only on a subset of supported hypervisor software releases.

Limitations with NVIDIA vGPU (C-Series) Migration Support

Red Hat Enterprise Linux with KVM: Migration between hosts running different versions of the NVIDIA Virtual GPU Manager driver is not supported, even within the same NVIDIA Virtual GPU Manager driver branch.

NVIDIA vGPU (C-Series) migration is disabled for a VM for which any of the following NVIDIA CUDA Toolkit features is enabled:

  • Unified memory

  • Debuggers

  • Profilers

Supported Hypervisor Software Releases

Since Red Hat Enterprise Linux with KVM 9.4

Not supported on Ubuntu

All supported releases of VMware vSphere

Known Issues with NVIDIA vGPU (C-Series) Migration Support

Requirements for Using NVIDIA vGPU (C-Series) on GPUs Requiring 64 GB or More of MMIO Space with Large-Memory VMs#

Use Case

Affected GPUs

Issue

Migration between hosts with different ECC memory configuration

All GPUs that support vGPU migration

Migration of VMs configured with vGPU stops before the migration is complete

vGPUs that Support Multiple vGPUs Assigned to a VM#

The supported vGPUs depend on the hypervisor:

  • For Linux with KVM hypervisors listed in NVIDIA AI Enterprise Infrastructure Support Matrix, Red Hat Enterprise Linux KVM, and Ubuntu, all NVIDIA vGPU (C-Series) are supported with PCIe GPUs. On GPUs that support the Multi-Instance GPU (MIG) feature, both time-sliced and MIG-backed vGPUs are supported.

  • For VMware vSphere, the supported vGPUs depend on the hypervisor release:

    • Since VMware vSphere 8.0: All NVIDIA vGPU (C-Series) are supported. On GPUs that support the Multi-Instance GPU (MIG) feature, both time-sliced and MIG-backed vGPUs are supported.

    • VMware vSphere 7.x releases: Only NVIDIA vGPU (C-Series) allocated all of the physical GPU’s framebuffer are supported.

You can assign multiple vGPUs with differing amounts of frame buffer to a single VM, provided the board type and the series of all the vGPUs are the same. For example, you can assign an A40-48C vGPU and an A40-16C vGPU to the same VM. However, you cannot assign an A30-8C vGPU and an A16-8C vGPU to the same VM.

Multiple vGPU Support on the NVIDIA Ada Lovelace Architecture#

Board

vGPU

NVIDIA L40

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • L40-48C

NVIDIA L40S

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • L40S-48C

NVIDIA L20

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • L20-48C

NVIDIA L4

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • L4-24C

NVIDIA L2

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • L2-24C

NVIDIA RTX 6000 Ada

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • RTX 6000 Ada-48C

NVIDIA RTX 5880 Ada

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • RTX 5880 Ada-48C

NVIDIA RTX 5000 Ada

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • RTX 5000 Ada-32C

Multiple vGPU Support on the NVIDIA Ampere GPU Architecture#

Board

vGPU [1]

  • NVIDIA A800 PCIe 80GB

  • NVIDIA A800 PCIe 80GB liquid-cooled

  • NVIDIA AX800

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • A800D-80C

NVIDIA A800 PCIe 40GB active-cooled

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • A800-40C

NVIDIA A800 HGX 80GB

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • A800DX-80C

  • NVIDIA A100 PCIe 80GB

  • NVIDIA A100 PCIe 80GB liquid-cooled

  • NVIDIA A100X

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • A100D-80C

NVIDIA A100 HGX 80GB

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • A100DX-80C

NVIDIA A100 PCIe 40GB

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • A100-40C

NVIDIA A100 HGX 40GB

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • A100X-40C

NVIDIA A40

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • A40-48C

  • NVIDIA A30

  • NVIDIA A30X

  • NVIDIA A30 liquid-cooled

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • A30-24C

NVIDIA A16

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • A16-16C

NVIDIA A10

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • A10-24C

NVIDIA RTX A6000

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • A6000-48C

NVIDIA RTX A5500

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • A5500-24C

NVIDIA RTX A5000

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • A5000-24C

Multiple vGPU Support on the NVIDIA Hopper GPU Architecture#

Board

vGPU [1]

NVIDIA H800 PCIe 94GB (H800 NVL)

All NVIDIA vGPU (C-Series)

NVIDIA H800 PCIe 80GB

All NVIDIA vGPU (C-Series)

NVIDIA H800 SXM5 80GB

NVIDIA vGPU (C-Series) [6]

NVIDIA H200 PCIe 141GB (H200 NVL)

All NVIDIA vGPU (C-Series)

NVIDIA H200 SXM5 141GB

NVIDIA vGPU (C-Series) [6]

NVIDIA H100 PCIe 94GB (H100 NVL)

All NVIDIA vGPU (C-Series)

NVIDIA H100 SXM5 94GB

NVIDIA vGPU (C-Series) [6]

NVIDIA H100 PCIe 80GB

All NVIDIA vGPU (C-Series)

NVIDIA H100 SXM5 80GB

NVIDIA vGPU (C-Series) [6]

NVIDIA H100 SXM5 64GB

NVIDIA vGPU (C-Series) [6]

NVIDIA H20 SXM5 141GB

NVIDIA vGPU (C-Series) [6]

NVIDIA H20 SXM5 96GB

NVIDIA vGPU (C-Series) [6]

Multiple vGPU Support on the NVIDIA Turing GPU Architecture#

Board

vGPU

Tesla T4

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • T4-16C

Quadro RTX 6000 passive

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • RTX6000P-24C

Quadro RTX 8000 passive

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • RTX8000P-48C

Multiple vGPU Support on the NVIDIA Volta GPU Architecture#

Board

vGPU

Tesla V100 SXM2

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • V100X-16C

Tesla V100 SXM2 32GB

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • V100D-32C

Tesla V100 PCIe

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • V100-16C

Tesla V100 PCIe 32GB

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • V100D-32C

Tesla V100S PCIe 32GB

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • V100S-32C

Tesla V100 FHHL

  • Generic Linux with KVM hypervisors [7], Red Hat Enterprise Linux KVM, and Ubuntu:
    • All NVIDIA vGPU (C-Series)

  • Since VMware vSphere 8.0:
    • All NVIDIA vGPU (C-Series)

  • VMware vSphere 7.x releases:
    • V100L-16C

vGPUs that Support Peer-to-Peer CUDA Transfers#

Only C-series time-sliced vGPUs allocated all of the physical GPU framebuffer on physical GPUs that support NVLink are supported.

Peer-to-Peer CUDA Transfer Support on the NVIDIA Ampere GPU Architecture#

Board

vGPU

  • NVIDIA A800 PCIe 80GB

  • NVIDIA A800 PCIe 80GB liquid-cooled

  • NVIDIA AX800

A800D-80C

NVIDIA A800 PCIe 40GB active-cooled

A800-40C

NVIDIA A800 HGX 80GB

A800DX-80C [2]

  • NVIDIA A100 PCIe 80GB

  • NVIDIA A100 PCIe 80GB liquid-cooled

  • NVIDIA A100X

A100D-80C

NVIDIA A100 HGX 80GB

A100DX-80C [2]

NVIDIA A100 PCIe 40GB

A100-40C

NVIDIA A100 HGX 40GB

A100X-40C [2]

NVIDIA A40

A40-48C

  • NVIDIA A30

  • NVIDIA A30X

  • NVIDIA A30 liquid-cooled

A30-24C

NVIDIA A16

A16-16C

NVIDIA A10

A10-24C

NVIDIA RTX A6000

A6000-48C

NVIDIA RTX A5500

A5500-24C

NVIDIA RTX A5000

A5000-24C

Peer-to-Peer CUDA Transfer Support on the NVIDIA Hopper GPU Architecture#

Board

vGPU

NVIDIA H800 PCIe 94GB (H800 NVL)

H800L-94C

NVIDIA H800 PCIe 80GB

H800-80C

NVIDIA H200 PCIe 141GB (H200 NVL)

H200-141C

NVIDIA H200 SXM5 141GB

H200X-141C

NVIDIA H100 PCIe 94GB (H100 NVL)

H100L-94C

NVIDIA H100 SXM5 94GB

H100XL-94C

NVIDIA H100 PCIe 80GB

H100-80C

NVIDIA H100 SXM5 80GB

H100XM-80C

NVIDIA H100 SXM5 64GB

H100XS-64C

NVIDIA H20 SXM5 141GB

H20X-141C

NVIDIA H20 SXM5 96GB

H20-96C

Peer-to-Peer CUDA Transfer Support on the NVIDIA Turing GPU Architecture#

Board

vGPU

Quadro RTX 8000 passive

RTX8000P-48C

Quadro RTX 6000 passive

RTX6000P-24C

Peer-to-Peer CUDA Transfer Support on the NVIDIA Volta GPU Architecture#

Board

vGPU

Tesla V100 SXM2

V100X-16C

Tesla V100 SXM2 32GB

V100DX-32C

GPUDirect Technology#

NVIDIA GPUDirect Remote Direct Memory Access (RDMA) technology enables network devices to access the vGPU frame buffer directly, bypassing CPU host memory altogether. GPUDirect Storage technology enables a direct data path for direct memory access (DMA) transfers between GPU and storage. GPUDirect technology is supported only on a subset of vGPUs and guest OS releases.

Supported vGPUs

GPUDirect RDMA and GPUDirect Storage technology are supported on all time-sliced and MIG-backed NVIDIA vGPU (C-Series) on physical GPUs that support single root I/O virtualization (SR-IOV).

GPUs are based on the following GPU architectures:

  • NVIDIA L40

  • NVIDIA L40S

  • NVIDIA L20

  • NVIDIA L20 liquid-cooled

  • NVIDIA L4

  • NVIDIA L2

  • NVIDIA RTX 6000 Ada

  • NVIDIA RTX 5880 Ada

  • NVIDIA RTX 5000 Ada

  • NVIDIA A800 PCIe 80GB

  • NVIDIA A800 PCIe 80GB liquid-cooled

  • NVIDIA A800 HGX 80GB

  • NVIDIA AX800

  • NVIDIA A800 PCIe 40GB active-cooled

  • NVIDIA A100 PCIe 80GB

  • NVIDIA A100 PCIe 80GB liquid-cooled

  • NVIDIA A100 HGX 80GB

  • NVIDIA A100 PCIe 40GB

  • NVIDIA A100 HGX 40GB

  • NVIDIA A100X

  • NVIDIA A40

  • NVIDIA A30

  • NVIDIA A30 liquid-cooled

  • NVIDIA A30X

  • NVIDIA A16

  • NVIDIA A10

  • NVIDIA A2

  • NVIDIA RTX A6000

  • NVIDIA RTX A5500

  • NVIDIA RTX A5000

  • NVIDIA H800 PCIe 94GB (H800 NVL)

  • NVIDIA H800 PCIe 80GB

  • NVIDIA H800 SXM5 80GB

  • NVIDIA H200 PCIe 141GB (H200 NVL)

  • NVIDIA H200 SXM5 141GB

  • NVIDIA H100 PCIe 94GB (H100 NVL)

  • NVIDIA H100 SXM5 94GB

  • NVIDIA H100 PCIe 80GB

  • NVIDIA H100 SXM5 80GB

  • NVIDIA H100 SXM5 64GB

  • NVIDIA H20 SXM5 141GB

  • NVIDIA H20 SXM5 96G

Supported Guest OS Releases

Linux only. GPUDirect technology is not supported on Windows.

Supported Network Interface Cards

GPUDirect technology is supported on the following network interface cards:

  • NVIDIA ConnectX- 7 SmartNIC

  • Mellanox Connect-X 6 SmartNIC

  • Mellanox Connect-X 5 Ethernet adapter card

Limitations

Starting with GPUDirect Storage technology release 1.7.2, the following limitations apply:

  • GPUDirect Storage technology is not supported on GPUs based on the NVIDIA Ampere GPU architecture.

  • On GPUs based on the NVIDIA Hopper GPU architecture and the NVIDIA Ada Lovelace GPU architecture, GPUDirect Storage technology is supported only with the guest driver for Linux based on NVIDIA Linux open GPU kernel modules.

GPUDirect Storage technology releases before 1.7.2 are supported only with guest drivers with Linux kernel versions earlier than 6.6.

GPUDirect Storage technology is supported only on the following guest OS releases:

  • Ubuntu 22.04 LTS

  • Ubuntu 20.04 LTS

NVIDIA NVSwitch On-Chip Memory Fabric#

NVIDIA NVSwitch on-chip memory fabric enables peer-to-peer vGPU communication within a single node over the NVLink fabric. It is supported only on a subset of hardware platforms, vGPUs, hypervisor software releases, and guest OS releases.

For information about using the NVSwitch on-chip memory fabric, refer to the Fabric Manager for NVIDIA NVSwitch Systems User Guide.

Hardware Platforms

  • NVIDIA HGX H800 8-GPU baseboard

  • NVIDIA HGX H100 8-GPU baseboard

  • NVIDIA HGX A100 8-GPU baseboard

Supported vGPUs

Only the following C-series time-sliced vGPUs that are allocated all of the physical GPU’s framebuffer are supported:

  • NVIDIA H800

  • NVIDIA H200 HGX

  • NVIDIA H100 SXM5

  • NVIDIA H20

  • NVIDIA A800

  • NVIDIA A100 HGX

NVIDIA NVSwitch On-Chip Memory Fabric Support on the NVIDIA Hopper GPU Architecture#

Board

vGPU

NVIDIA H800 SXM5 80GB

H800XM-80C

NVIDIA H200 SXM5 141GB

H200X-141C

NVIDIA H100 SXM5 80GB

H100XM-80C

NVIDIA H20 SXM5 141GB

H20X-141C

NVIDIA H20 SXM5 96GB

H20-96C

NVIDIA NVSwitch On-Chip Memory Fabric Support on the NVIDIA Ampere GPU Architecture#

Board

vGPU

NVIDIA A800 HGX 80GB

A800DX-80C

NVIDIA A100 HGX 80GB

A100DX-80C

NVIDIA A100 HGX 40GB

A100X-40C

Hypervisor Releases

Consult the documentation from your hypervisor vendor for information about which generic Linux with KVM hypervisor software releases supports NVIDIA NVSwitch on-chip memory fabric.

All supported Red Hat Enterprise Linux KVM releases support NVIDIA NVSwitch on-chip memory fabric.

On the Ubuntu hypervisor, NVSwitch is not supported.

The earliest VMware vSphere Hypervisor (ESXi) release that supports NVIDIA NVSwitch on-chip memory fabric depends on the GPU architecture.

Hypervisor Releases that Support NVIDIA NVSwitch On-Chip Memory Fabric#

GPU Architecture

Earliest Supported VMware vSphere Hypervisor (ESXi) Release

NVIDIA Hopper

VMware vSphere Hypervisor (ESXi) 8 update 2

NVIDIA Ampere

VMware vSphere Hypervisor (ESXi) 8 update 1

Guest OS Releases

Linux only. NVIDIA NVSwitch on-chip memory fabric is not supported on Windows.

Limitations

  • Only time-sliced vGPUs are supported. MIG-backed vGPUs are not supported.

  • On the Ubuntu hypervisor, NVSwitch is not supported.

  • GPU passthrough is not supported.

  • SLI is not supported.

  • All vGPUs communicating peer-to-peer must be assigned to the same VM.

  • On GPUs based on the NVIDIA Hopper GPU architecture, multicast is not supported.

vGPUs that Support Unified Memory#

All MIG-backed vGPUs are supported on GPUs that support the Multi-Instance GPU (MIG) feature. Only time-sliced NVIDIA vGPUs (C-Series) that allocate all of the physical GPU’s frame buffer on physical GPUs that support unified memory are supported.

Unified Memory Support on the NVIDIA Ada Lovelace GPU Architecture#

Board

vGPU

NVIDIA L40

L40-48C

NVIDIA L40S

L40S-48C

  • NVIDIA L20

  • NVIDIA L20 liquid-cooled

L20-48C

NVIDIA L4

L4-24C

NVIDIA L2

L2-24C

NVIDIA RTX 6000 Ada

RTX 6000 Ada-48C

NVIDIA RTX 5880 Ada

RTX 5880 Ada-48C

NVIDIA RTX 5000 Ada

RTX 6000 Ada-32C

Unified Memory Support on the NVIDIA Ampere GPU Architecture#

Board

vGPU

  • NVIDIA A800 PCIe 80GB

  • NVIDIA A800 PCIe 80GB liquid-cooled

  • NVIDIA AX800

  • A800D-80C

  • All MIG-backed vGPUs

NVIDIA A800 PCIe 40GB active-cooled

  • A800-40C

  • All MIG-backed vGPUs

NVIDIA A800 HGX 80GB

  • A800DX-80C

  • All MIG-backed vGPUs

  • NVIDIA A100 PCIe 80GB

  • NVIDIA A100 PCIe 80GB liquid-cooled

  • NVIDIA A100X

  • A100D-80C

  • All MIG-backed vGPUs

NVIDIA A100 HGX 80GB

  • A100DX-80C

  • All MIG-backed vGPUs

NVIDIA A100 PCIe 40GB

  • A100-40C

  • All MIG-backed vGPUs

NVIDIA A100 HGX 40GB

  • A100X-40C

  • All MIG-backed vGPUs

NVIDIA A40

A40-48C

  • NVIDIA A30

  • NVIDIA A30X

  • NVIDIA A30 liquid-cooled

  • A30-24C

  • All MIG-backed vGPUs

NVIDIA A16

A16-16C

NVIDIA A10

A10-24C

NVIDIA RTX A6000

A6000-48C

NVIDIA RTX A5500

A5500-24C

NVIDIA RTX A5000

A5000-24C

Unified Memory Support on the NVIDIA Hopper GPU Architecture#

Board

vGPU

NVIDIA H800 PCIe 94GB (H800 NVL)

  • H800L-94C

  • All MIG-backed vGPUs

NVIDIA H800 PCIe 80GB

  • H800-80C

  • All MIG-backed vGPUs

NVIDIA H800 SXM5 80GB

  • H800XM-80C

  • All MIG-backed vGPUs

NVIDIA H200 SXM5

  • H200X-141C

  • All MIG-backed vGPUs

NVIDIA H200 NVL

  • H200-141C

  • All MIG-backed vGPUs

NVIDIA H100 PCIe 94GB (H100 NVL)

  • H100L-94C

  • All MIG-backed vGPUs

NVIDIA H100 SXM5 94GB

  • H100XL-94C

  • All MIG-backed vGPUs

NVIDIA H100 PCIe 80GB

  • H100-80C

  • All MIG-backed vGPUs

NVIDIA H100 SXM5 80GB

  • H100XM-80C

  • All MIG-backed vGPUs

NVIDIA H100 SXM5 64GB

  • H100XS-64C

  • All MIG-backed vGPUs

NVIDIA H20 SXM5 141GB

  • H20X-141C

  • All MIG-backed vGPUs

NVIDIA H20 SXM5 96GB

  • H20-96C

  • All MIG-backed vGPUs

Limitations#

Total Frame Buffer for vGPUs is Less Than the Total Frame Buffer on the Physical GPU#

The hypervisor uses some of the physical GPU’s frame buffer on behalf of the VM for allocations that the guest OS would otherwise have made in its frame buffer. The frame buffer used by the hypervisor is not available for vGPUs on the physical GPU. In NVIDIA vGPU deployments, the frame buffer for the guest OS is reserved in advance, whereas in bare-metal deployments, the frame buffer for the guest OS is reserved based on the runtime needs of applications.

If error-correcting code (ECC) memory is enabled on a physical GPU that does not have HBM2 memory, the amount of frame buffer usable by vGPUs is further reduced. All types of vGPUs are affected, not just those that support ECC memory.

An additional frame buffer is allocated for dynamic page retirement on all GPUs that support ECC memory and, therefore, dynamic page retirement. The allocated amount is inversely proportional to the maximum number of vGPUs per physical GPU. All GPUs that support ECC memory are affected, even those with HBM2 memory or for which ECC memory is disabled.

The approximate amount of frame buffer that NVIDIA AI Enterprise reserves can be calculated from the following formula:

max-reserved-fb = vgpu-profile-size-in-mb÷16 + 16 + ecc-adjustments + page-retirement-allocation + compression-adjustment

max-reserved-fb - The total amount of reserved frame buffer in Mbytes that is unavailable for vGPUs.

vgpu-profile-size-in-mb - The amount of frame buffer allocated to a single vGPU in Mbytes. This amount depends on the vGPU type. For example, for the T4-16Q vGPU type, vgpu-profile-size-in-mb is 16384.

ecc-adjustments - The amount of frame buffer in Mbytes that is not usable by vGPUs when ECC is enabled on a physical GPU that does not have HBM2 memory.

  • If ECC is enabled on a physical GPU that does not have HBM2 memory, ecc-adjustments is fb-without-ecc/16, equivalent to 64 Mbytes for every Gbyte of frame buffer assigned to the vGPU. fb-without-ecc is the total amount of frame buffer with ECC disabled.

  • If ECC is disabled or the GPU has HBM2 memory, ecc-adjustments is 0.

page-retirement-allocation - The amount of frame buffer in Mbytes reserved for dynamic page retirement.

  • On GPUs based on the NVIDIA Maxwell GPU architecture, page-retirement-allocation = 4÷max-vgpus-per-gpu.

  • On GPUs based on NVIDIA GPU architectures after the Maxwell architecture, page-retirement-allocation = 128÷max-vgpus-per-gpu.

max-vgpus-per-gpu - The maximum number of vGPUs that can be created simultaneously on a physical GPU. This number varies according to the vGPU type. For example, for the T4-16Q vGPU type, max-vgpus-per-gpu is 1.

compression-adjustment - The amount of frame buffer in Mbytes that is reserved for the higher compression overhead in vGPU types with 12 Gbytes or more of frame buffer on GPUs based on the Turing architecture. compression-adjustment depends on the vGPU type, as shown in the following table.

Total frame buffer for vGPUs is less than the total frame buffer on the physical GPU#

vGPU Type

Compression Adjustment (MB)

T4-16C

28

RTX6000-12C

32

RTX6000-24C

104

RTX6000P-12C

32

RTX6000P-24C

104

RTX8000-12C

32

RTX8000-16C

64

RTX8000-24C

96

RTX8000-48C

238

RTX8000P-12C

32

RTX8000P-16C

64

RTX8000P-24C

96

RTX8000P-48C

238

For all other vGPU types, compression-adjustment is 0.

Single vGPU Benchmark Scores are Lower Than Passthrough GPU#

Description

A single vGPU configured on a physical GPU produces lower benchmark scores than the physical GPU run in passthrough mode.

Aside from performance differences that may be attributed to a vGPU’s smaller frame buffer size, vGPU incorporates a performance balancing feature known as a Frame Rate Limiter (FRL). On vGPUs that use the best-effort scheduler, FRL is enabled. On vGPUs that use the fixed share or equal share scheduler, FRL is disabled.

FRL ensures balanced performance across multiple vGPUs resident on the same physical GPU. The FRL setting is designed to give a good interactive remote graphics experience. Still, it may reduce scores in benchmarks that depend on measuring frame rendering rates compared to the same benchmarks running on a passthrough GPU.

Resolution

An internal vGPU setting controls FRL. On vGPUs that use the best-effort scheduler, NVIDIA does not validate a vGPU with FRL disabled. Still, for benchmark performance validation, FRL can be temporarily disabled by adding the configuration parameter pciPassthru0.cfg.frame_rate_limiter in the VM’s advanced configuration options.

Note

This setting can only be changed when the VM is powered off.

  1. Select Edit Settings.

  2. In the Edit Settings window, select the VM Options tab.

  3. From the Advanced drop-down list, select Edit Configuration.

  4. In the Configuration Parameters dialog box, click Add Row.

  5. In the Name field, type the parameter pciPassthru0.cfg.frame_rate_limiter.

  6. In the Value field, type 0 and click OK.

Single vGPU benchmark scores are lower than passthrough GPU

With this setting, the VM’s vGPU will run without any frame rate limit. The FRL can be reverted to its default setting by setting pciPassthru0.cfg.frame_rate_limiter to 1 or removing the parameter from the advanced settings.

Resolution

An internal vGPU setting controls FRL. On vGPUs that use the best-effort scheduler, NVIDIA does not validate a vGPU with FRL disabled, but for benchmark performance validation, FRL can be temporarily disabled by setting frame_rate_limiter=0 in the vGPU configuration file.

# echo "frame_rate_limiter=0" > /sys/bus/mdev/devices/vgpu-id/nvidia/vgpu_params

For example:

# echo "frame_rate_limiter=0" > /sys/bus/mdev/devices/aa618089-8b16-4d01-a136-25a0f3c73123/nvidia/vgpu_params

The setting takes effect the next time any VM using the given vGPU type is started.

With this setting, the VM’s vGPU will run without any frame rate limit.

The FRL can be reverted to its default setting as follows:

  1. Clear all parameter settings in the vGPU configuration file.

    # echo " " > /sys/bus/mdev/devices/vgpu-id/nvidia/vgpu_params
    

    Note

    You cannot clear specific parameter settings. If your vGPU configuration file contains other parameter settings that you want to keep, you must reinstate them in the next step.

  2. Set frame_rate_limiter=1 in the vGPU configuration file.

    # echo "frame_rate_limiter=1" > /sys/bus/mdev/devices/vgpu-id/nvidia/vgpu_params
    

    If you need to reinstate other parameter settings, include them in the command to set frame_rate_limiter=1. For example:

    # echo "frame_rate_limiter=1 disable_vnc=1" > /sys/bus/mdev/devices/aa618089-8b16-4d01-a136-25a0f3c73123/nvidia/vgpu_params
    

User Guide#

Installing the NVIDIA Virtual GPU Manager#

NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM#

This topic assumes you want to set up a single Red Hat Enterprise Linux Kernel-based Virtual Machine (KVM) VM to use NVIDIA vGPU.

Caution

Output from the VM console is unavailable for VMs running vGPU. Before configuring vGPU, ensure you have installed an alternate means of accessing the VM (such as a VNC server).

Follow this sequence of instructions:

  1. Install the Virtual GPU Manager Package for Red Hat Enterprise Linux KVM

  2. Verify the Installation of the NVIDIA AI Enterprise for Red Hat Enterprise Linux KVM

  3. MIG-backed vGPUs only: Configure a GPU for MIG-Backed vGPUs

  4. vGPUs that support SR-IOV only: Prepare the Virtual Function for an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM Hypervisor

  5. Optional: Put a GPU into Mixed-Size Mode

  6. Get the BDF and Domain of a GPU on a Linux with KVM Hypervisor

  7. Create an NVIDIA vGPU on a Linux with KVM Hypervisor

  8. Add one or more vGPUs to a Linux with KVM Hypervisor VM

  9. Optional: Place a vGPU on a Physical GPU in Mixed-Size Mode

  10. Set the vGPU Plugin Parameters on a Linux with KVM Hypervisor

After the process, you can install the NVIDIA vGPU (C-Series) Driver for your guest OS and license any NVIDIA AI Enterprise-licensed products you use.

NVIDIA Virtual GPU Manager for Ubuntu#

Caution

Output from the VM console is unavailable for VMs running vGPU. Before configuring vGPU, ensure you have installed an alternate means of accessing the VM (such as a VNC server).

Follow this sequence of instructions to set up a single Ubuntu VM to use NVIDIA vGPU.

  1. Install the NVIDIA Virtual GPU Manager for Ubuntu

  2. MIG-backed vGPUs only: Configure a GPU for MIG-Backed vGPUs

  3. Get the BDF and Domain of a GPU on a Linux with KVM Hypervisor

  4. vGPUs that support SR-IOV only: Prepare the Virtual Function for an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM Hypervisor

  5. Optional: Put a GPU Into Mixed-Size Mode

  6. Create an NVIDIA vGPU on a Linux with KVM Hypervisor

  7. Add one or more vGPUs to a Linux with KVM Hypervisor VM

  8. Optional: Place a vGPU on a Physical GPU in Mixed-Size Mode

  9. Set the vGPU Plugin Parameters on a Linux with KVM Hypervisor

After the process, you can install the NVIDIA vGPU (C-Series) Driver for your guest OS and license any NVIDIA AI Enterprise-licensed products you use.

NVIDIA Virtual GPU Manager for VMware vSphere#

You can use the NVIDIA Virtual GPU Manager for VMware vSphere to set up a VMware vSphere VM to use NVIDIA vGPU.

Note

Some servers, for example, the Dell R740, do not configure SR-IOV capability if the SR-IOV SBIOS setting is disabled on the server. If you are using the Tesla T4 GPU with VMware vSphere on such a server, you must ensure that the SR-IOV SBIOS setting is enabled on the server.

However, with any server hardware, SR-IOV is not enabled in the VMware vCenter Server for the Tesla T4 GPU. If SR-IOV is enabled in the VMware vCenter Server for T4, the GPU’s status is listed as needing a reboot. You can ignore this status message.

Requirements for Configuring NVIDIA vGPU in a DRS Cluster

You can configure a VM with NVIDIA vGPU on an ESXi host in a VMware Distributed Resource Scheduler (DRS) cluster. However, to ensure that the cluster’s automation level supports VMs configured with NVIDIA vGPU, you must set the automation level to Partially Automated or Manual.

For more information about these settings, refer to Edit Cluster Settings in the VMware documentation.

Administering MIG-Backed NVIDIA vGPUs#

Architecture#

A MIG-backed vGPU is a vGPU that resides on a GPU instance in a MIG-capable physical GPU. Each MIG-backed vGPU resident on a GPU has exclusive access to the GPU instance’s engines, including the compute and video decode engines.

In a MIG-backed vGPU, processes that run on the vGPU run in parallel with processes running on other vGPUs on the GPU. The process runs on all vGPUs resident on a physical GPU simultaneously.

MIG-Backed NVIDIA vGPU Internal Architecture

Configurations on a Single GPU#

NVIDIA vGPU supports homogeneous and mixed MIG-backed virtual GPUs based on the underlying GPU instance configuration.

For example, an NVIDIA A100 PCIe 40GB card has one physical GPU and can support several types of virtual GPU. The figure shows examples of valid homogeneous and mixed MIG-backed virtual GPU configurations on NVIDIA A100 PCIe 40GB.

  • A valid homogeneous configuration with 3 A100-2-10C vGPUs on 3 MIG.2g.10b GPU instances

  • A valid homogeneous configuration with 2 A100-3-20C vGPUs on 3 MIG.3g.20b GPU instances

  • A valid mixed configuration with 1 A100-4-20C vGPU on a MIG.4g.20b GPU instance, 1 A100-2-10C vGPU on a MIG.2.10b GPU instance, and 1 A100-1-5C vGPU on a MIG.1g.5b instance

Valid MIG-Backed Virtual GPU Configurations on a Single GPU

Configuring the NVIDIA Virtual GPU Manager#

Modifying a MIG-Backed vGPU’s Configuration#

If compute instances weren’t created within the GPU instances when the GPU was configured for MIG-backed vGPUs, you can add the compute instances for an individual vGPU from within the guest VM. If you want to replace the compute instances created when the GPU was configured for MIG-backed vGPUs, you can delete them before adding the compute instances from within the guest VM.

Ensure that the following prerequisites are met:

  • You have root user privileges in the guest VM.

  • Other processes, such as CUDA applications, monitoring applications, or the nvidia-smi command, do not use the GPU instance.

Perform this task in a guest VM command shell.

  1. Open a command shell as the root user in the guest VM. You can use a secure shell (SSH) on all supported hypervisors. Individual hypervisors may provide additional means for logging in. For details, refer to the documentation for your hypervisor.

  2. List the available GPU instances.

    $ nvidia-smi mig -lgi
      +----------------------------------------------------+
      | GPU instances:                                     |
      | GPU   Name          Profile  Instance   Placement  |
      |                       ID       ID       Start:Size |
      |====================================================|
      |   0  MIG 2g.10gb       0        0          0:8     |
      +----------------------------------------------------+
    
  3. Optional: If compute instances were created when the GPU was configured for MIG-backed vGPUs that you no longer require, delete them.

    $ nvidia-smi mig -dci -ci compute-instance-id -gi gpu-instance-id
    

    compute-instance-id - The ID of the compute instance that you want to delete.

    gpu-instance-id - The ID of the GPU instance from which you want to delete the compute instance.

    Note

    This command fails if another process is using the GPU instance. In this situation, stop all processes using the GPU instance and retry the command.

    This example deletes compute instance 0 from GPU instance 0 on GPU 0.

    $ nvidia-smi mig -dci -ci 0 -gi 0
    Successfully destroyed compute instance ID  0 from GPU  0 GPU instance ID  0
    
  4. List the compute instance profiles that are available for your GPU instance.

    $ nvidia-smi mig -lcip
    

    This example shows that one MIG 2g.10gb compute instance or two MIG 1c.2g.10gb compute instances can be created within the GPU instance.

    $ nvidia-smi mig -lcip
      +-------------------------------------------------------------------------------+
      | Compute instance profiles:                                                    |
      | GPU    GPU      Name          Profile  Instances   Exclusive      Shared      |
      |      Instance                   ID     Free/Total     SM      DEC   ENC   OFA |
      |        ID                                                     CE    JPEG      |
      |===============================================================================|
      |   0     0       MIG 1c.2g.10gb   0      2/2           14       1     0     0  |
      |                                                                2     0        |
      +-------------------------------------------------------------------------------+
      |   0     0       MIG 2g.10gb      1*     1/1           28       1     0     0  |
      |                                                                2     0        |
      +-------------------------------------------------------------------------------+
    
  5. Create the compute instances that you need within the available GPU instance. Run the following command to create each compute instance individually.

    $ nvidia-smi mig -cci compute-instance-profile-id -gi gpu-instance-id
    

    compute-instance-profile-id - The compute instance profile ID that specifies the compute instance.

    gpu-instance-id - The GPU instance ID specifies the GPU instance within which you want to create the compute instance.

    Note

    This command fails if another process is using the GPU instance. In this situation, stop all GPU processes and retry the command.

    This example creates a MIG 2g.10gb compute instance on GPU instance 0.

    $ nvidia-smi mig -cci 1 -gi 0
    Successfully created compute instance ID  0 on GPU  0 GPU instance ID  0 using profile MIG 2g.10gb (ID  1)
    

    This example creates two MIG 1c.2g.10gb compute instances on GPU instance 0 by running the same command twice.

    $ nvidia-smi mig -cci 0 -gi 0
    Successfully created compute instance ID  0 on GPU  0 GPU instance ID  0 using profile MIG 1c.2g.10gb (ID  0)
    $ nvidia-smi mig -cci 0 -gi 0
    Successfully created compute instance ID  1 on GPU  0 GPU instance ID  0 using profile MIG 1c.2g.10gb (ID  0)
    
  6. Verify that the compute instances were created within the GPU instance. Use the nvidia-smi command for this purpose. This example confirms that a MIG 2g.10gb compute instance was created on GPU instance 0.

    nvidia-smi
      Mon Mar 25 19:01:24 2024
      +-----------------------------------------------------------------------------+
      | NVIDIA-SMI 550.54.16    Driver Version: 550.54.16   CUDA Version:  12.3     |
      |-------------------------------+----------------------+----------------------+
      | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
      | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
      |                               |                      |               MIG M. |
      |===============================+======================+======================|
      |   0  GRID A100X-2-10C     On  | 00000000:00:08.0 Off |                   On |
      | N/A   N/A    P0    N/A /  N/A |   1058MiB / 10235MiB |     N/A      Default |
      |                               |                      |              Enabled |
      +-------------------------------+----------------------+----------------------+
    
      +-----------------------------------------------------------------------------+
      | MIG devices:                                                                |
      +------------------+----------------------+-----------+-----------------------+
      | GPU  GI  CI  MIG |         Memory-Usage |        Vol|         Shared        |
      |      ID  ID  Dev |           BAR1-Usage | SM     Unc| CE  ENC  DEC  OFA  JPG|
      |                  |                      |        ECC|                       |
      |==================+======================+===========+=======================|
      |  0    0   0   0  |   1058MiB / 10235MiB | 28      0 |  2   0    1    0    0 |
      |                  |      0MiB /  4096MiB |           |                       |
      +------------------+----------------------+-----------+-----------------------+
    
      +-----------------------------------------------------------------------------+
      | Processes:                                                                  |
      |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
      |        ID   ID                                                   Usage      |
      |=============================================================================|
      |  No running processes found                                                 |
      +-----------------------------------------------------------------------------+
    

    This example confirms that two MIG 1c.2g.10gb compute instances were created on GPU instance 0.

    $ nvidia-smi
      Mon Mar 25 19:01:24 2024
      +-----------------------------------------------------------------------------+
      | NVIDIA-SMI 550.54.16    Driver Version: 550.54.16   CUDA Version:  12.3     |
      |-------------------------------+----------------------+----------------------+
      | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
      | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
      |                               |                      |               MIG M. |
      |===============================+======================+======================|
      |   0  GRID A100X-2-10C     On  | 00000000:00:08.0 Off |                   On |
      | N/A   N/A    P0    N/A /  N/A |   1058MiB / 10235MiB |     N/A      Default |
      |                               |                      |              Enabled |
      +-------------------------------+----------------------+----------------------+
    
      +-----------------------------------------------------------------------------+
      | MIG devices:                                                                |
      +------------------+----------------------+-----------+-----------------------+
      | GPU  GI  CI  MIG |         Memory-Usage |        Vol|         Shared        |
      |      ID  ID  Dev |           BAR1-Usage | SM     Unc| CE  ENC  DEC  OFA  JPG|
      |                  |                      |        ECC|                       |
      |==================+======================+===========+=======================|
      |  0    0   0   0  |   1058MiB / 10235MiB | 14      0 |  2   0    1    0    0 |
      |                  |      0MiB /  4096MiB |           |                       |
      +------------------+                      +-----------+-----------------------+
      |  0    0   1   1  |                      | 14      0 |  2   0    1    0    0 |
      |                  |                      |           |                       |
      +------------------+----------------------+-----------+-----------------------+
    
      +-----------------------------------------------------------------------------+
      | Processes:                                                                  |
      |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
      |        ID   ID                                                   Usage      |
      |=============================================================================|
      |  No running processes found                                                 |
      +-----------------------------------------------------------------------------+
    
Configuring a GPU for MIG-Backed vGPUs#

To support GPU instances with NVIDIA vGPU, a GPU must be configured with MIG mode enabled, and GPU instances must be created and configured on the physical GPU. Optionally, you can create compute instances within the GPU instances. If you don’t create compute instances within the GPU instances, they can be added later for individual vGPUs from within the guest VMs.

Ensure that the following prerequisites are met:

  • The NVIDIA Virtual GPU Manager is installed on the hypervisor host.

  • You have root user privileges on your hypervisor host machine.

  • You have determined which GPU instances correspond to the vGPU types of the MIG-backed vGPUs you will create.

  • Other processes, such as CUDA applications, monitoring applications, or the nvidia-smi command, do not use the GPU.

To configure a GPU for MIG-backed vGPUs, follow these instructions:

  1. Enable MIG mode for a GPU.

    Note

    For VMware vSphere, only enabling MIG mode is required because VMware vSphere creates the GPU instances, and after the VM is booted and the guest driver is installed, one compute instance is automatically created in the VM.

  2. Create a GPU instance on a MIG-enabled GPU.

  3. Optional: Create a compute instance in a GPU instance.

After configuring a GPU for MIG-backed vGPUs, create the vGPUs you need and add them to their VMs.

Enabling MIG Mode for a GPU#

Perform this task in your hypervisor command shell.

  1. Open a command shell as the root user on your hypervisor host machine. You can use a secure shell (SSH) on all supported hypervisors. Individual hypervisors may provide additional means for logging in. For details, refer to the documentation for your hypervisor.

  2. Determine whether MIG mode is enabled. Use the nvidia-smi command for this purpose. By default, MIG mode is disabled. This example shows that MIG mode is disabled on GPU 0.

    Note

    In the output from nvidia-smi, the NVIDIA A100 HGX 40GB GPU is referred to as A100-SXM4-40GB.

    $ nvidia-smi -i 0
        +-----------------------------------------------------------------------------+
        | NVIDIA-SMI 550.54.16   Driver Version: 550.54.16    CUDA Version:  12.3     |
        |-------------------------------+----------------------+----------------------+
        | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
        | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
        |                               |                      |               MIG M. |
        |===============================+======================+======================|
        |   0  A100-SXM4-40GB      On   | 00000000:36:00.0 Off |                    0 |
        | N/A   29C    P0    62W / 400W |      0MiB / 40537MiB |      6%      Default |
        |                               |                      |             Disabled |
        +-------------------------------+----------------------+----------------------+
    
  3. If MIG mode is disabled, enable it.

    $ nvidia-smi -i [gpu-ids] -mig 1
    

    gpu-ids - A comma-separated list of GPU indexes, PCI bus IDs, or UUIDs specifying the GPUs you want to enable MIG mode. If gpu-ids are omitted, MIG mode is enabled on all GPUs on the system.

    This example enables MIG mode on GPU 0.

    $ nvidia-smi -i 0 -mig 1
    Enabled MIG Mode for GPU 00000000:36:00.0
    All done.
    

    Note

    If another process is using the GPU, this command fails and displays a warning message that MIG mode for the GPU is in the pending enable state. In this situation, stop all GPU processes and retry the command.

  4. VMware vSphere ESXi with GPUs based only on the NVIDIA Ampere architecture: Reboot the hypervisor host. If you are using a different hypervisor or GPUs based on the NVIDIA Hopper GPU architecture or a later architecture, omit this step.

  5. Query the GPUs on which you enabled MIG mode to confirm that MIG mode is enabled. This example queries GPU 0 for the PCI bus ID and MIG mode in comma-separated values (CSV) format.

    $ nvidia-smi -i 0 --query-gpu=pci.bus_id,mig.mode.current --format=csv
    pci.bus_id, mig.mode.current
    00000000:36:00.0, Enabled
    
Creating GPU Instances on a MIG-Enabled GPU#

Note

If you are using VMware vSphere, omit this task. VMware vSphere creates the GPU instances automatically.

Perform this task in your hypervisor command shell.

  1. Open a command shell as the root user on your hypervisor host machine if necessary.

  2. List the GPU instance profiles that are available on your GPU. When you create a profile, you must specify the profiles by their IDs, not their names.

    $ nvidia-smi mig -lgip
      +--------------------------------------------------------------------------+
      | GPU instance profiles:                                                   |
      | GPU   Name          ID    Instances   Memory     P2P    SM    DEC   ENC  |
      |                           Free/Total   GiB              CE    JPEG  OFA  |
      |==========================================================================|
      |   0  MIG 1g.5gb     19     7/7        4.95       No     14     0     0   |
      |                                                          1     0     0   |
      +--------------------------------------------------------------------------+
      |   0  MIG 2g.10gb    14     3/3        9.90       No     28     1     0   |
      |                                                          2     0     0   |
      +--------------------------------------------------------------------------+
      |   0  MIG 3g.20gb     9     2/2        19.79      No     42     2     0   |
      |                                                          3     0     0   |
      +--------------------------------------------------------------------------+
      |   0  MIG 4g.20gb     5     1/1        19.79      No     56     2     0   |
      |                                                          4     0     0   |
      +--------------------------------------------------------------------------+
      |   0  MIG 7g.40gb     0     1/1        39.59      No     98     5     0   |
      |                                                          7     1     1   |
      +--------------------------------------------------------------------------+
    
  3. Create the GPU instances corresponding to the vGPU types of the MIG-backed vGPUs you will create.

    Note

    $ nvidia-smi mig -cgi gpu-instance-profile-ids

    gpu-instance-profile-ids - A comma-separated list of GPU instance profile IDs specifying the GPU instances you want to create.

    This example creates two GPU instances of type 2g.10gb with profile ID 14.

    $ nvidia-smi mig -cgi 14,14
    Successfully created GPU instance ID  5 on GPU  2 using profile MIG 2g.10gb (ID 14)
    Successfully created GPU instance ID  3 on GPU  2 using profile MIG 2g.10gb (ID 14)
    
Optional: Creating Compute Instances in a GPU Instance#

Creating compute instances within GPU instances is optional. If you don’t create compute instances within the GPU instances, they can be added later for individual vGPUs from within the guest VMs.

Note

If you are using VMware vSphere, omit this task. One compute instance is automatically created after the VM is booted and the guest driver is installed.

Perform this task in your hypervisor command shell.

  1. Open a command shell as the root user on your hypervisor host machine if necessary.

  2. List the available GPU instances.

    $ nvidia-smi mig -lgi
      +----------------------------------------------------+
      | GPU instances:                                     |
      | GPU   Name          Profile  Instance   Placement  |
      |                       ID       ID       Start:Size |
      |====================================================|
      |   2  MIG 2g.10gb      14        3          0:2     |
      +----------------------------------------------------+
      |   2  MIG 2g.10gb      14        5          4:2     |
      +----------------------------------------------------+
    
  3. Create the compute instances that you need within each GPU instance.

    $ nvidia-smi mig -cci -gi gpu-instance-ids
    

    gpu-instance-ids - A comma-separated list of GPU instance IDs that specifies the GPU instances within which you want to create the compute instances.

    Caution

    To avoid an inconsistent state between a guest VM and the hypervisor host, do not create compute instances from the hypervisor on a GPU instance on which an active guest VM is running. Instead, create the compute instances from within the guest VM as explained in Modifying a MIG-Backed vGPU’s Configuration.

    This example creates a compute instance on each GPU instance 3 and 5.

    $ nvidia-smi mig -cci -gi 3,5
    Successfully created compute instance on GPU  0 GPU instance ID  1 using profile ID  2
    Successfully created compute instance on GPU  0 GPU instance ID  2 using profile ID  2
    
  4. Verify that the compute instances were created within each GPU instance.

    $ nvidia-smi
      +-----------------------------------------------------------------------------+
      | MIG devices:                                                                |
      +------------------+----------------------+-----------+-----------------------+
      | GPU  GI  CI  MIG |         Memory-Usage |        Vol|         Shared        |
      |      ID  ID  Dev |           BAR1-Usage | SM     Unc| CE  ENC  DEC  OFA  JPG|
      |                  |                      |        ECC|                       |
      |==================+======================+===========+=======================|
      |  2    3   0   0  |      0MiB /  9984MiB | 28      0 |  2   0    1    0    0 |
      |                  |      0MiB / 16383MiB |           |                       |
      +------------------+----------------------+-----------+-----------------------+
      |  2    5   0   1  |      0MiB /  9984MiB | 28      0 |  2   0    1    0    0 |
      |                  |      0MiB / 16383MiB |           |                       |
      +------------------+----------------------+-----------+-----------------------+
    
      +-----------------------------------------------------------------------------+
      | Processes:                                                                  |
      |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
      |        ID   ID                                                   Usage      |
      |=============================================================================|
    

    Note

    Additional compute instances created in a VM are destroyed when the VM is shut down or rebooted. After the shutdown or reboot, only one compute instance remains in the VM. This compute instance is created automatically after installing the NVIDIA vGPU (C-Series) Driver.

Disabling MIG Mode for one or more GPUs#

If a GPU you want to use for time-sliced vGPUs or GPU passthrough has previously been configured for MIG-backed vGPUs, disable MIG mode on the GPU.

Ensure that the following prerequisites are met:

  • The NVIDIA Virtual GPU Manager is installed on the hypervisor host.

  • You have root user privileges on your hypervisor host machine.

  • Other processes, such as CUDA applications, monitoring applications, or the nvidia-smi command, do not use the GPU.

Perform this task in your hypervisor command shell.

  1. Open a command shell as the root user on your hypervisor host machine. You can use a secure shell (SSH) on all supported hypervisors. Individual hypervisors may provide additional means for logging in. For details, refer to the documentation for your hypervisor.

  2. Determine whether MIG mode is disabled. Use the nvidia-smi command for this purpose. By default, MIG mode is disabled but might have previously been enabled. This example shows that MIG mode is enabled on GPU 0.

    Note

    In the output from nvidia-smi, the NVIDIA A100 HGX 40GB GPU is referred to as A100-SXM4-40GB.

    $ nvidia-smi -i 0
      +-----------------------------------------------------------------------------+
      | NVIDIA-SMI 550.54.16    Driver Version: 550.54.16   CUDA Version:  12.3     |
      |-------------------------------+----------------------+----------------------+
      | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
      | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
      |                               |                      |               MIG M. |
      |===============================+======================+======================|
      |   0  A100-SXM4-40GB      Off  | 00000000:36:00.0 Off |                    0 |
      | N/A   29C    P0    62W / 400W |      0MiB / 40537MiB |      6%      Default |
      |                               |                      |              Enabled |
      +-------------------------------+----------------------+----------------------+
    
  3. If MIG mode is enabled, disable it.

    $ nvidia-smi -i [gpu-ids] -mig 0
    

    gpu-ids - A comma-separated list of GPU indexes, PCI bus IDs, or UUIDs specifying the GPUs you want to disable MIG mode. If gpu-ids are omitted, MIG mode is disabled for all GPUs in the system.

    This example disables MIG Mode on GPU 0.

    $ sudo nvidia-smi -i 0 -mig 0
    Disabled MIG Mode for GPU 00000000:36:00.0
    All done.
    
  4. Confirm that MIG mode was disabled. Use the nvidia-smi command for this purpose. This example shows that MIG mode is disabled on GPU 0.

    $ nvidia-smi -i 0
      +-----------------------------------------------------------------------------+
      | NVIDIA-SMI 550.54.16    Driver Version: 550.54.16   CUDA Version:  12.3     |
      |-------------------------------+----------------------+----------------------+
      | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
      | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
      |                               |                      |               MIG M. |
      |===============================+======================+======================|
      |   0  A100-SXM4-40GB      Off  | 00000000:36:00.0 Off |                    0 |
      | N/A   29C    P0    62W / 400W |      0MiB / 40537MiB |      6%      Default |
      |                               |                      |             Disabled |
      +-------------------------------+----------------------+----------------------+
    

Monitoring MIG-backed vGPU Activity#

Note

MIG-backed vGPU activity cannot be monitored on GPUs based on the NVIDIA Ampere GPU architecture because the required hardware feature is absent.

To monitor MIG-backed vGPU activity across multiple vGPUs, run nvidia-smi vgpu with the --gpm-metrics ID-list option.

ID-list - A comma-separated list of integer IDs that specify the statistics to monitor, as shown in the following table. The table also shows the column’s name in the command output under which the statistic is reported.

Monitoring MIG-backed vGPU Activity#

Statistic

ID

Column

Graphics activity

1

gract

Streaming multiprocessor (SM) activity

2

smutil

SM occupancy

3

smocc

Integer activity

4

intutil

Tensor activity

5

mmaact

Double-precision fused multiply-add (DFMA) tensor activity

6

dfmat

Half matrix multiplication and accumulation (HMMA) tensor activity

7

hmmat

Integer matrix multiplication and accumulation (IMMA) tensor activity

9

immat

Dynamic random-access memory (DRAM) activity

10

dram

Double-precision 64-bit floating-point (FP64) activity

11

fp64

Single-precision 32-bit floating-point (FP32) activity

12

fp32

Half-precision 16-bit FP16 activity

13

fp16

Each reported percentage is the percentage of the physical GPU’s capacity that a vGPU is using. For example, a vGPU that uses 20% of the GPU’s DRAM capacity will report 20%.

For each vGPU, the specified statistics are reported once every second.

To modify the reporting frequency, use the -l or --loop option.

To limit monitoring to a subset of the platform’s GPUs, use the -i or --id option to select one or more GPUs.

The following example reports graphics activity, SM activity, SM occupancy, and integer activity for one vGPU VM powered on and within which one application runs.

[root@vgpu ~]# nvidia-smi vgpu --gpm-metrics 1,2,3,4
     # gpu        vgpu    mig_id       gi_id        ci_id       gract    smutil      smocc    intutil
     # Idx          Id       Idx         Idx          Idx           %         %          %          %
         0  3251634249          0           2            0           -         -          -          -
         0  3251634249          0           2            0          99        97         26         13
         0  3251634249          0           2            0          99        96         23         13
         0  3251634249          0           2            0          99        97         27         13

No activity is reported when no vGPUs are active on the hypervisor host.

[root@vgpu ~]# nvidia-smi vgpu --gpm-metrics 1,2,3,4
     # gpu        vgpu    mig_id       gi_id        ci_id       gract    smutil      smocc    intutil
     # Idx          Id       Idx         Idx          Idx           %         %          %          %
         0            -         -           -            -           -         -          -          -
         0            -         -           -            -           -         -          -          -
         0            -         -           -            -           -         -          -          -

Installing NVIDIA AI Enterprise Software Components#

Installing the NVIDIA AI Enterprise Software Components Using Kubernetes#

Perform this task if you are using one of the following combinations of guest operating system and container platform:

  • Ubuntu with Kubernetes

Ensure that the following prerequisites are met:

  1. If you are using Kubernetes, ensure that:

    1. Kubernetes is installed in the VM.

    2. NVIDIA vGPU (C-Series) Virtual GPU Manager is installed.

    3. NVIDIA vGPU License Server with licenses is installed.

  2. Helm is installed.

  3. You have generated your NGC API key to access the NVIDIA AI Enterprise Software on NGC Catalog using the URL provided to you by NVIDIA.

Transforming Container Images for AI and Data Science Applications and Frameworks into Kubernetes Pods#

The AI and data science applications and frameworks are distributed as NGC container images through the NGC private registry. If you are using Kubernetes or Red Hat OpenShift, you must transform each image that you want to use into a Kubernetes pod. Each container image contains the entire user-space software stack required to run the application or framework: the CUDA libraries, cuDNN, any required Magnum IO components, TensorRT, and the framework.

Installing the NVIDIA AI Enterprise Application Software and Deep Learning Framework Components Using Docker#

NVIDIA AI Enterprise Application Software is available through the NGC Catalog and identifiable by the NVIDIA AI Enterprise Supported label.

The container image for each application or framework contains the entire user-space software stack required to run it, namely, the CUDA libraries, cuDNN, any required Magnum IO components, TensorRT, and the framework.

Ensure that you have completed the following tasks in the NGC Private Registry User Guide:

Perform this task from the VM.

Obtain the Docker pull command to download the NVIDIA AI Enterprise Application Software you like to leverage from the NGC Catalog.

Installing the NVIDIA GPU Operator Using a Bash Shell Script#

A bash shell script for installing the NVIDIA GPU Operator with the NVIDIA vGPU (C-Series) Driver is available for download from NVIDIA NGC.

Before performing this task, ensure that the following prerequisites are met:

  • A client configuration token has been generated for the client on which the script will install the NVIDIA vGPU (C-Series) Driver.

  • The NVIDIA NGC user’s API key to create the image pull secret has been generated.

  • The following environment variables are set:

    • NGC_API_KEY - The NVIDIA NGC user’s API key to create the image pull secret. For example:

      export NGC_API_KEY="RLh1zerCiG4wPGWWt4Tyj2VMyd7T8MnDyCT95pygP5VJFv8en4eLvdXVZzjm"
      
    • NGC_USER_EMAIL - The email address of the NVIDIA NGC user to be used for creating the image pull secret. For example:

      export NGC_USER_EMAIL="ada.lovelace@example.com"
      
  1. Download the NVIDIA GPU Operator - Deploy Installer Script from NVIDIA NGC.

  2. Ensure that the file access modes of the script allow the owner to execute the script.

    1. Change to the directory that contains the script.

      # cd script-directory
      

      script-directory - The directory to which you downloaded the script in the previous step.

    2. Determine the current file access modes of the script.

      # ls -l gpu-operator-nvaie.sh
      
    3. If necessary, grant execute permission to the owner of the script.

      # chmod u+x gpu-operator-nvaie.sh
      
  3. Copy the client configuration token to the directory that contains the script.

  4. Rename the client configuration token to client_configuration_token.tok. The client configuration token is generated with a file name and a time stamp: client_configuration_token_mm-dd-yyy-hh-mm-ss.tok.

  5. Start the script from the directory that contains it, specifying the option to install the NVIDIA vGPU (C-Series) Driver.

    # bash gpu-operator-nvaie.sh install
    

Virtual GPU Types for Supported GPUs#

NVIDIA Ada Lovelace GPU Architecture#

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of vGPUs per GPU and the number of physical GPUs per board.

Required license edition: NVIDIA vGPU (C-Series)

Intended use cases:

  • vGPUs with more than 4096 MB of frame buffer: Training Workloads

  • vGPUs with 4096 MB of frame buffer: Inference Workloads

These vGPU types support a single display with a fixed maximum resolution.

NVIDIA vGPU (C-Series) for NVIDIA L40#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

L40-48C

49152

1

1

3840x2400

1

L40-24C

24576

2

2

3840x2400

1

L40-16C

16384

3

2

3840x2400

1

L40-12C

12288

4

4

3840x2400

1

L40-8C

8192

6

4

3840x2400

1

L40-6C

6144

8

8

3840x2400

1

L40-4C

4096

12 [5]

8

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA L40S#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

L40S-48C

49152

1

1

3840x2400

1

L40S-24C

24576

2

2

3840x2400

1

L40S-16C

16384

3

2

3840x2400

1

L40S-12C

12288

4

4

3840x2400

1

L40S-8C

8192

6

4

3840x2400

1

L40S-6C

6144

8

8

3840x2400

1

L40S-4C

4096

12 [5]

8

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA L20#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

L20-48C

49152

1

1

3840x2400

1

L20-24C

24576

2

2

3840x2400

1

L20-16C

16384

3

2

3840x2400

1

L20-12C

12288

4

4

3840x2400

1

L20-8C

8192

6

4

3840x2400

1

L20-6C

6144

8

8

3840x2400

1

L20-4C

4096

12 [5]

8

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA L20 Liquid-Cooled#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

L20-48C

49152

1

1

3840x2400

1

L20-24C

24576

2

2

3840x2400

1

L20-16C

16384

3

2

3840x2400

1

L20-12C

12288

4

4

3840x2400

1

L20-8C

8192

6

4

3840x2400

1

L20-6C

6144

8

8

3840x2400

1

L20-4C

4096

12 [5]

8

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA L4#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

L4-24C

24576

1

1

3840x2400

1

L4-12C

12288

2

2

3840x2400

1

L4-8C

8192

3

2

3840x2400

1

L4-6C

6144

4

4

3840x2400

1

L4-4C

4096

6

4

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA L2#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

L2-24C

24576

1

1

3840x2400

1

L2-12C

12288

2

2

3840x2400

1

L2-8C

8192

3

2

3840x2400

1

L2-6C

6144

4

4

3840x2400

1

L2-4C

4096

6

4

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA RTX 6000 Ada#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

RTX 6000 Ada-48C

49152

1

1

3840x2400

1

RTX 6000 Ada-24C

24576

2

2

3840x2400

1

RTX 6000 Ada-16C

16384

3

2

3840x2400

1

RTX 6000 Ada-12C

12288

4

4

3840x2400

1

RTX 6000 Ada-8C

8192

6

4

3840x2400

1

RTX 6000 Ada-6C

6144

8

8

3840x2400

1

RTX 6000 Ada-4C

4096

12 [5]

8

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA RTX 5880 Ada#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

RTX 5880 Ada-48C

49152

1

1

3840x2400

1

RTX 5880 Ada-24C

24576

2

2

3840x2400

1

RTX 5880 Ada-16C

16384

3

2

3840x2400

1

RTX 5880 Ada-12C

12288

4

4

3840x2400

1

RTX 5880 Ada-8C

8192

6

4

3840x2400

1

RTX 5880 Ada-6C

6144

8

8

3840x2400

1

RTX 5880 Ada-4C

4096

12 [5]

8

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA RTX 5000 Ada#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

RTX 5000 Ada-32C

32768

1

1

3840x2400

1

RTX 5000 Ada-16C

16384

2

2

3840x2400

1

RTX 5000 Ada-8C

8192

4

4

3840x2400

1

RTX 5000 Ada-4C

4096

8

8

3840x2400

1

NVIDIA Ampere GPU Architecture#

Physical GPUs per board: 1 (with the exception of NVIDIA A16)

The maximum number of vGPUs per board is the product of the maximum number of vGPUs per GPU and the number of physical GPUs per board.

Required license edition: NVIDIA vGPU (C-Series)

Intended use cases:

  • vGPUs with more than 4096 MB of frame buffer: Training Workloads

  • vGPUs with 4096 MB of frame buffer: Inference Workloads

These vGPU types support a single display with a fixed maximum resolution.

NVIDIA vGPU (C-Series) for NVIDIA A40#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A40-48C

49152

1

1

3840x2400

1

A40-24C

24576

2

2

3840x2400

1

A40-16C

16384

3

2

3840x2400

1

A40-12C

12288

4

4

3840x2400

1

A40-8C

8192

6

4

3840x2400

1

A40-6C

6144

8

8

3840x2400

1

A40-4C

4096

12 [5]

8

3840x2400

1

Physical GPUs per board: 4

NVIDIA vGPU (C-Series) for NVIDIA A16#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A16-16C

16384

1

1

3840x2400

1

A16-8C

8192

2

2

3840x2400

1

A16-4C

4096

4

4

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA A10#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A10-24C

24576

1

1

3840x2400

1

A10-12C

12288

2

2

3840x2400

1

A10-8C

8192

3

2

3840x2400

1

A10-6C

6144

4

4

3840x2400

1

A10-4C

4096

6

4

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA RTX A6000#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

RTXA6000-48C

49152

1

1

3840x2400

1

RTXA6000-24C

24576

2

2

3840x2400

1

RTXA6000-16C

16384

3

2

3840x2400

1

RTXA6000-12C

12288

4

4

3840x2400

1

RTXA6000-8C

8192

6

4

3840x2400

1

RTXA6000-6C

6144

8

8

3840x2400

1

RTXA6000-4C

4096

12 [5]

8

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA RTX A5500#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

RTXA5500-24C

24576

1

1

3840x2400

1

RTXA5500-12C

12288

2

2

3840x2400

1

RTXA5500-8C

8192

3

2

3840x2400

1

RTXA5500-6C

6144

4

4

3840x2400

1

RTXA5500-4C

4096

6

4

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA RTX A5000#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

RTXA5000-24

24576

1

1

3840x2400

1

RTXA5000-12C

12288

2

2

3840x2400

1

RTXA5000-8C

8192

3

2

3840x2400

1

RTXA5000-6C

6144

4

4

3840x2400

1

RTXA5000-4C

4096

6

4

3840x2400

1

MIG-Backed and Time-Sliced NVIDIA vGPU (C-Series) for the NVIDIA Ampere GPU Architecture#

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of vGPUs per GPU and the number of physical GPUs per board.

Required license edition: NVIDIA vGPU (C-Series)

MIG-Backed NVIDIA vGPU (C-Series)

For details on GPU instance profiles, refer to the NVIDIA Multi-Instance GPU User Guide.

Time-Sliced NVIDIA vGPU (C-Series)

Intended use cases:

  • vGPUs with more than 4096 MB of frame buffer: Training Workloads

  • vGPUs with 4096 MB of frame buffer: Inference Workloads

These vGPU types support a single display with a fixed maximum resolution.

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA A800 PCIe 80GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

A800D-7-80C

81920

1

7

7

MIG 7g.80gb

A800D-4-40C

40960

1

4

4

MIG 4g.40gb

A800D-3-40C

40960

2

3

3

MIG 3g.40gb

A800D-2-20C

20480

3

2

2

MIG 2g.20gb

A800D-1-20C [3]

20480

4

1

1

MIG 1g.20gb

A800D-1-10C

10240

7

1

1

MIG 1g.10gb

A800D-1-10CME [3]

10240

1

1

1

MIG 1g.10gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA A800 PCIe 80GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A800D-80C

81920

1

1

3840x2400

1

A800D-40C

40960

2

2

3840x2400

1

A800D-20C

20480

4

4

3840x2400

1

A800D-16C

16384

5

4

3840x2400

1

A800D-10C

10240

8

8

3840x2400

1

A800D-8C

8192

10

8

3840x2400

1

A800D-4C

4096

20

16

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA A800 PCIe 80GB Liquid-Cooled#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

A800D-7-80C

81920

1

7

7

MIG 7g.80gb

A800D-4-40C

40960

1

4

4

MIG 4g.40gb

A800D-3-40C

40960

2

3

3

MIG 3g.40gb

A800D-2-20C

20480

3

2

2

MIG 2g.20gb

A800D-1-20C [3]

20480

4

1

1

MIG 1g.20gb

A800D-1-10C

10240

7

1

1

MIG 1g.10gb

A800D-1-10CME [3]

10240

1

1

1

MIG 1g.10gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA A800 PCIe 80GB Liquid-Cooled#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A800D-80C

81920

1

1

3840x2400

1

A800D-40C

40960

2

2

3840x2400

1

A800D-20C

20480

4

4

3840x2400

1

A800D-16C

16384

5

4

3840x2400

1

A800D-10C

10240

8

8

3840x2400

1

A800D-8C

8192

10

8

3840x2400

1

A800D-4C

4096

20

16

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA AX800#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

A800D-7-80C

81920

1

7

7

MIG 7g.80gb

A800D-4-40C

40960

1

4

4

MIG 4g.40gb

A800D-3-40C

40960

2

3

3

MIG 3g.40gb

A800D-2-20C

20480

3

2

2

MIG 2g.20gb

A800D-1-20C [3]

20480

4

1

1

MIG 1g.20gb

A800D-1-10C

10240

7

1

1

MIG 1g.10gb

A800D-1-10CME [3]

10240

1

1

1

MIG 1g.10gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA AX800#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A800D-80C

81920

1

1

3840x2400

1

A800D-40C

40960

2

2

3840x2400

1

A800D-20C

20480

4

4

3840x2400

1

A800D-16C

16384

5

4

3840x2400

1

A800D-10C

10240

8

8

3840x2400

1

A800D-8C

8192

10

8

3840x2400

1

A800D-4C

4096

20

16

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA A800 PCIe 40GB Active Cooled#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

A800-7-40C

40960

1

7

7

MIG 7g.40gb

A800-4-20C

20480

1

4

4

MIG 4g.20gb

A800-3-20C

20480

2

3

3

MIG 3g.20gb

A800-2-10C

10240

3

2

2

MIG 2g.10gb

A800-1-10C [3]

10240

4

1

1

MIG 1g.10gb

A800-1-5C

5120

7

1

1

MIG 1g.5gb

A800-1-5CME [3]

5120

1

1

1

MIG 1g.5gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA A800 PCIe 40GB Active Cooled#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A800-40C

40960

1

1

3840x2400

1

A800-20C

20480

2

2

3840x2400

1

A800-10C

10240

4

4

3840x2400

1

A800-8C

8192

5

4

3840x2400

1

A800-5C

5120

8

8

3840x2400

1

A800-4C

4096

10

8

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA A800 HGX 80GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

A800DX-7-80C

81920

1

7

7

MIG 7g.80gb

A800DX-4-40C

40960

1

4

4

MIG 4g.40gb

A800DX-3-40C

40960

2

3

3

MIG 3g.40gb

A800DX-2-20C

20480

3

2

2

MIG 2g.20gb

A800DX-1-20C [3]

20480

4

1

1

MIG 1g.20gb

A800DX-1-10C

10240

7

1

1

MIG 1g.10gb

A800DX-1-10CME [3]

10240

1

1

1

MIG 1g.10gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA A800 HGX 80GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A800DX-80C

81920

1

1

3840x2400

1

A800DX-40C

40960

2

2

3840x2400

1

A800DX-20C

20480

4

4

3840x2400

1

A800DX-16C

16384

5

4

3840x2400

1

A800DX-10C

10240

8

8

3840x2400

1

A800DX-8C

8192

10

8

3840x2400

1

A800DX-4C

4096

20

16

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA A100 PCIe 80GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

A100D-7-80C

81920

1

7

7

MIG 7g.80gb

A100D-4-40C

40960

1

4

4

MIG 4g.40gb

A100D-3-40C

40960

2

3

3

MIG 3g.40gb

A100D-2-20C

20480

3

2

2

MIG 2g.20gb

A100D-1-20C [3]

20480

4

1

1

MIG 1g.20gb

A100D-1-10C

10240

7

1

1

MIG 1g.10gb

A100D-1-10CME [3]

10240

1

1

1

MIG 1g.10gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA A100 PCIe 80GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A100D-80C

81920

1

1

3840x2400

1

A100D-40C

40960

2

2

3840x2400

1

A100D-20C

20480

4

4

3840x2400

1

A100D-16C

16384

5

4

3840x2400

1

A100D-10C

10240

8

8

3840x2400

1

A100D-8C

8192

10

8

3840x2400

1

A100D-4C

4096

20

16

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA A100 PCIe 80GB Liquid-Cooled#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

A100D-7-80C

81920

1

7

7

MIG 7g.80gb

A100D-4-40C

40960

1

4

4

MIG 4g.40gb

A100D-3-40C

40960

2

3

3

MIG 3g.40gb

A100D-2-20C

20480

3

2

2

MIG 2g.20gb

A100D-1-20C [3]

20480

4

1

1

MIG 1g.20gb

A100D-1-10C

10240

7

1

1

MIG 1g.10gb

A100D-1-10CME [3]

10240

1

1

1

MIG 1g.10gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA A100 PCIe 80GB Liquid-Cooled#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A100D-80C

81920

1

1

3840x2400

1

A100D-40C

40960

2

2

3840x2400

1

A100D-20C

20480

4

4

3840x2400

1

A100D-16C

16384

5

4

3840x2400

1

A100D-10C

10240

8

8

3840x2400

1

A100D-8C

8192

10

8

3840x2400

1

A100D-4C

4096

20

16

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA A100X#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

A100D-7-80C

81920

1

7

7

MIG 7g.80gb

A100D-4-40C

40960

1

4

4

MIG 4g.40gb

A100D-3-40C

40960

2

3

3

MIG 3g.40gb

A100D-2-20C

20480

3

2

2

MIG 2g.20gb

A100D-1-20C [3]

20480

4

1

1

MIG 1g.20gb

A100D-1-10C

10240

7

1

1

MIG 1g.10gb

A100D-1-10CME [3]

10240

1

1

1

MIG 1g.10gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA A100X#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A100D-80C

81920

1

1

3840x2400

1

A100D-40C

40960

2

2

3840x2400

1

A100D-20C

20480

4

4

3840x2400

1

A100D-16C

16384

5

4

3840x2400

1

A100D-10C

10240

8

8

3840x2400

1

A100D-8C

8192

10

8

3840x2400

1

A100D-4C

4096

20

16

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA A100 HGX 80GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

A100DX-7-80C

81920

1

7

7

MIG 7g.80gb

A100DX-4-40C

40960

1

4

4

MIG 4g.40gb

A100DX-3-40C

40960

2

3

3

MIG 3g.40gb

A100DX-2-20C

20480

3

2

2

MIG 2g.20gb

A100DX-1-20C [3]

20480

4

1

1

MIG 1g.20gb

A100DX-1-10C

10240

7

1

1

MIG 1g.10gb

A100DX-1-10CME [3]

10240

1

1

1

MIG 1g.10gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA A100 HGX 80GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A100DX-80C

81920

1

1

3840x2400

1

A100DX-40C

40960

2

2

3840x2400

1

A100DX-20C

20480

4

4

3840x2400

1

A100DX-16C

16384

5

4

3840x2400

1

A100DX-10C

10240

8

8

3840x2400

1

A100DX-8C

8192

10

8

3840x2400

1

A100DX-4C

4096

20

16

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA A100 PCIe 40GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

A100-7-40C

40960

1

7

7

MIG 7g.40gb

A100-4-20C

20480

1

4

4

MIG 4g.20gb

A100-3-20C

20480

2

3

3

MIG 3g.20gb

A100-2-10C

10240

3

2

2

MIG 2g.10gb

A100-1-10C [3]

10240

4

1

1

MIG 1g.10gb

A100-1-5C

5120

7

1

1

MIG 1g.5gb

A100-1-5CME [3]

5120

1

1

1

MIG 1g.5gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA A100 PCIe 40GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A100-40C

40960

1

1

3840x2400

1

A100-20C

20480

2

2

3840x2400

1

A100-10C

10240

4

4

3840x2400

1

A100-8C

8192

5

4

3840x2400

1

A100-5C

5120

8

8

3840x2400

1

A100-4C

4096

10

8

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA A100 HGX 40GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

A100X-7-40C

40960

1

7

7

MIG 7g.40gb

A100X-4-20C

20480

1

4

4

MIG 4g.20gb

A100X-3-20C

20480

2

3

3

MIG 3g.20gb

A100X-2-10C

10240

3

2

2

MIG 2g.10gb

A100X-1-10C [3]

10240

4

1

1

MIG 1g.10gb

A100X-1-5C

5120

7

1

1

MIG 1g.5gb

A100X-1-5CME [3]

5120

1

1

1

MIG 1g.5gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA A100 HGX 40GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A100X-40C

40960

1

1

3840x2400

1

A100X-20C

20480

2

2

3840x2400

1

A100X-10C

10240

4

4

3840x2400

1

A100X-8C

8192

5

4

3840x2400

1

A100X-5C

5120

8

8

3840x2400

1

A100X-4C

4096

10

8

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA A30#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

A30-4-24C

24576

1

4

4

MIG 4g.24gb

A30-2-12C

12288

2

2

2

MIG 2g.12gb

A30-2-12CME [3]

12288

1

2

2

MIG 2g.12gb+me

A30-1-6C

6144

4

1

1

MIG 1g.6gb

A30-1-6CME [3]

6144

1

1

1

MIG 1g.6gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA A30#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A30-24C

24576

1

1

3840x2400

1

A30-12C

12288

2

2

3840x2400

1

A30-8C

8192

3

2

3840x2400

1

A30-6C

6144

4

4

3840x2400

1

A30-4C

4096

6

4

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA A30X#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

A30-4-24C

24576

1

4

4

MIG 4g.24gb

A30-2-12C

12288

2

2

2

MIG 2g.12gb

A30-2-12CME [3]

12288

1

2

2

MIG 2g.12gb+me

A30-1-6C

6144

4

1

1

MIG 1g.6gb

A30-1-6CME [3]

6144

1

1

1

MIG 1g.6gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA A30X#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A30-24C

24576

1

1

3840x2400

1

A30-12C

12288

2

2

3840x2400

1

A30-8C

8192

3

2

3840x2400

1

A30-6C

6144

4

4

3840x2400

1

A30-4C

4096

6

4

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA A30 Liquid-Cooled#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

A30-4-24C

24576

1

4

4

MIG 4g.24gb

A30-2-12C

12288

2

2

2

MIG 2g.12gb

A30-2-12CME [3]

12288

1

2

2

MIG 2g.12gb+me

A30-1-6C

6144

4

1

1

MIG 1g.6gb

A30-1-6CME [3]

6144

1

1

1

MIG 1g.6gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA A30 Liquid-Cooled#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

A30-24C

24576

1

1

3840x2400

1

A30-12C

12288

2

2

3840x2400

1

A30-8C

8192

3

2

3840x2400

1

A30-6C

6144

4

4

3840x2400

1

A30-4C

4096

6

4

3840x2400

1

NVIDIA Hopper GPU Architecture#

MIG-Backed and Time-Sliced NVIDIA vGPU (C-Series) for the NVIDIA Hopper GPU Architecture#

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of vGPUs per GPU and the number of physical GPUs per board.

Required license edition: NVIDIA vGPU (C-Series)

MIG-Backed NVIDIA vGPU (C-Series)

For details on GPU instance profiles, refer to the NVIDIA Multi-Instance GPU User Guide.

Time-Sliced NVIDIA vGPU (C-Series)

Intended use cases:

  • vGPUs with more than 4096 MB of frame buffer: Training Workloads

  • vGPUs with 4096 MB of frame buffer: Inference Workloads

These vGPU types support a single display with a fixed maximum resolution.

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA H800 PCIe 94GB (H800 NVL)#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

H800L-7-94C

96246

1

7

7

MIG 7g.94gb

H800L-4-47C

48128

1

4

4

MIG 4g.47gb

H800L-3-47C

48128

2

3

3

MIG 3g.47gb

H800L-2-24C

24672

3

2

2

MIG 2g.24gb

H800L-1-24C

24672

4

1

1

MIG 1g.24gb

H800L-1-12C

12288

7

1

1

MIG 1g.12gb

H800L-1-12CME [3]

12288

1

1

1

MIG 1g.12gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA H800 PCIe 94GB (H800 NVL)#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

H800L-94C

96246

1

1

3840x2400

1

H800L-47C

48128

2

2

3840x2400

1

H800L-23C

23552

4

4

3840x2400

1

H800L-15C

15360

6

4

3840x2400

1

H800L-11C

11264

8

8

3840x2400

1

H800L-6C

6144

15

8

3840x2400

1

H800L-4C

4096

23

16

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA H800 PCIe 80GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

H800-7-80C

81920

1

7

7

MIG 7g.80gb

H800-4-40C

40960

1

4

4

MIG 4g.40gb

H800-3-40C

40960

2

3

3

MIG 3g.40gb

H800-2-20C

20480

3

2

2

MIG 2g.20gb

H800-1-20C [3]

20480

4

1

1

MIG 1g.20gb

H800-1-10C

10240

7

1

1

MIG 1g.10gb

H800-1-10CME [3]

10240

1

1

1

MIG 1g.10gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA H800 PCIe 80GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

H800-80C

81920

1

1

3840x2400

1

H800-40C

40960

2

2

3840x2400

1

H800-20C

20480

4

4

3840x2400

1

H800-16C

16384

5

4

3840x2400

1

H800-10C

10240

8

8

3840x2400

1

H800-8C

8192

10

8

3840x2400

1

H800-5C

5120

16

16

3840x2400

1

H800-4C

4096

20

16

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA H800 SXM5 80GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

H800XM-7-80C

81920

1

7

7

MIG 7g.80gb

H800XM-4-40C

40960

1

4

4

MIG 4g.40gb

H800XM-3-40C

40960

2

3

3

MIG 3g.40gb

H800XM-2-20C

20480

3

2

2

MIG 2g.20gb

H800XM-1-20C [3]

20480

4

1

1

MIG 1g.20gb

H800XM-1-10C

10240

7

1

1

MIG 1g.10gb

H800XM-1-10CME [3]

10240

1

1

1

MIG 1g.10gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA H800 SXM5 80GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

H800XM-80C

81920

1

1

3840x2400

1

H800XM-40C

40960

2

2

3840x2400

1

H800XM-20C

20480

4

4

3840x2400

1

H800XM-16C

16384

5

4

3840x2400

1

H800XM-10C

10240

8

8

3840x2400

1

H800XM-8C

8192

10

8

3840x2400

1

H800XM-5C

5120

16

16

3840x2400

1

H800XM-4C

4096

20

16

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA H200 PCIe 141GB (H200 NVL)#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

H200-7-141C

144384

1

7

7

MIG 7g.141gb

H200-4-71C

72704

1

4

4

MIG 4g.71gb

H200-3-71C

72704

2

3

3

MIG 3g.71gb

H200-2-35C

35840

3

2

2

MIG 2g.35gb

H200-1-35C [3]

35840

4

1

1

MIG 1g.35gb

H200-1-18C

18432

7

1

1

MIG 1g.18gb

H200-1-18CME [3]

18432

1

1

1

MIG 1g.18gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA H200 PCIe 141GB (H200 NVL)#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

H200-141C

144384

1

1

3840x2400

1

H200-70C

71680

2

2

3840x2400

1

H200-35C

35840

4

4

3840x2400

1

H200-28C

28672

5

5

3840x2400

1

H200-17C

17408

8

8

3840x2400

1

H200-14C

14336

10

10

3840x2400

1

H200-8C

8192

16

16

3840x2400

1

H200-7C

7168

20

20

3840x2400

1

H200-4C

4096

32

32

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA H200 SXM5 141GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

H200X-7-141C

144384

1

7

7

MIG 7g.141gb

H200X-4-71C

72704

1

4

4

MIG 4g.71gb

H200X-3-71C

72704

2

3

3

MIG 3g.71gb

H200X-2-35C

35840

3

2

2

MIG 2g.35gb

H200X-1-35C [3]

35840

4

1

1

MIG 1g.35gb

H200X-1-18C

18432

7

1

1

MIG 1g.18gb

H200X-1-18CME [3]

18432

1

1

1

MIG 1g.18gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA H200 SXM5 141GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

H200X-141C

144384

1

1

3840x2400

1

H200X-70C

71680

2

2

3840x2400

1

H200X-35C

35840

4

4

3840x2400

1

H200X-28C

28672

5

5

3840x2400

1

H200X-17C

17408

8

8

3840x2400

1

H200X-14C

14336

10

10

3840x2400

1

H200X-8C

8192

16

16

3840x2400

1

H200X-7C

7168

20

20

3840x2400

1

H200X-4C

4096

32

32

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA H100 PCIe 94GB (H100 NVL)#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

H100L-7-94C

96246

1

7

7

MIG 7g.94gb

H100L-4-47C

48128

1

4

4

MIG 4g.47gb

H100L-3-47C

48128

2

3

3

MIG 3g.47gb

H100L-2-24C

24672

3

2

2

MIG 2g.24gb

H100L-1-24C [3]

24672

4

1

1

MIG 1g.24gb

H100L-1-12C

12288

7

1

1

MIG 1g.12gb

H100L-1-12CME [3]

12288

1

1

1

MIG 1g.12gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA H100 PCIe 94GB (H100 NVL)#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

H100L-94C

96246

1

1

3840x2400

1

H100L-47C

48128

2

2

3840x2400

1

H100L-23C

23552

4

4

3840x2400

1

H100L-15C

15360

6

4

3840x2400

1

H100L-11C

11264

8

8

3840x2400

1

H100L-6C

6144

15

8

3840x2400

1

H100L-4C

4096

23

16

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA H100 SXM5 94GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

H100XL-7-94C

96246

1

7

7

MIG 7g.94gb

H100XL-4-47C

48128

1

4

4

MIG 4g.47gb

H100XL-3-47C

48128

2

3

3

MIG 3g.47gb

H100XL-2-24C

24672

3

2

2

MIG 2g.24gb

H100XL-1-24C [3]

24672

4

1

1

MIG 1g.24gb

H100XL-1-12C

12288

7

1

1

MIG 1g.12gb

H100XL-1-12CME [3]

12288

1

1

1

MIG 1g.12gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA H100 SXM5 94GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

H100XL-94C

96246

1

1

3840x2400

1

H100XL-47C

48128

2

2

3840x2400

1

H100XL-23C

23552

4

4

3840x2400

1

H100XL-15C

15360

6

4

3840x2400

1

H100XL-11C

11264

8

8

3840x2400

1

H100XL-6C

6144

15

8

3840x2400

1

H100XL-4C

4096

23

16

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA H100 PCIe 80GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

H100-7-80C

81920

1

7

7

MIG 7g.80gb

H100-4-40C

40960

1

4

4

MIG 4g.40gb

H100-3-40C

40960

2

3

3

MIG 3g.40gb

H100-2-20C

20480

3

2

2

MIG 2g.20gb

H100-1-20C [3]

20480

4

1

1

MIG 1g.20gb

H100-1-10C

10240

7

1

1

MIG 1g.10gb

H100-1-10CME [3]

10240

1

1

1

MIG 1g.10gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA H100 PCIe 80GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

H100-80

81920

1

1

3840x2400

1

H100-40C

40960

2

2

3840x2400

1

H100-20C

20480

4

4

3840x2400

1

H100-16C

16384

6

4

3840x2400

1

H100-10C

10240

8

8

3840x2400

1

H100-8C

8192

10

8

3840x2400

1

H100-5C

5120

16

16

3840x2400

1

H100-4C

4096

20

16

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA H100 SXM5 80GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

H100XM-7-80C

81920

1

7

7

MIG 7g.80gb

H100XM-4-40C

40960

1

4

4

MIG 4g.40gb

H100XM-3-40C

40960

2

3

3

MIG 3g.40gb

H100XM-2-20C

20480

3

2

2

MIG 2g.20gb

H100XM-1-20C [3]

20480

4

1

1

MIG 1g.20gb

H100XM-1-10C

10240

7

1

1

MIG 1g.10gb

H100XM-1-10CME [3]

10240

1

1

1

MIG 1g.10gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA H100 SXM5 80GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

H100XM-80C

81920

1

1

3840x2400

1

H100XM-40C

40960

2

2

3840x2400

1

H100XM-20C

20480

4

4

3840x2400

1

H100XM-16C

16384

6

4

3840x2400

1

H100XM-10C

10240

8

8

3840x2400

1

H100XM-8C

8192

10

8

3840x2400

1

H100XM-5C

5120

16

16

3840x2400

1

H100XM-4C

4096

20

16

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA H100 SXM5 64GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

H100XS-7-64C

65536

1

7

7

MIG 7g.64gb

H100XS-4-32C

32768

1

4

4

MIG 4g.32gb

H100XS-3-32C

32768

2

3

3

MIG 3g.32gb

H100XS-2-16C

16384

3

2

2

MIG 2g.16gb

H100XS-1-16C [3]

16384

4

1

1

MIG 1g.16gb

H100XS-1-8C

8192

7

1

1

MIG 1g.8gb

H100XS-1-8CME [3]

8192

1

1

1

MIG 1g.8gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA H100 SXM5 64GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

H100XS-64C

65536

1

1

3840x2400

1

H100XS-32C

32768

2

2

3840x2400

1

H100XS-16C

16384

4

4

3840x2400

1

H100XS-8C

8192

8

8

3840x2400

1

H100XS-4C

4096

16

16

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA H20 SXM5 141GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

H20X-7-141C

144384

1

7

7

MIG 7g.141gb

H20X-4-71C

72704

1

4

4

MIG 4g.71gb

H20X-3-71C

72704

2

3

3

MIG 3g.71gb

H20X-2-35C

35840

3

2

2

MIG 2g.35gb

H20X-1-35C [3]

35840

4

1

1

MIG 1g.35gb

H20X-1-18C

18432

7

1

1

MIG 1g.18gb

H20X-1-18CME [3]

18432

1

1

1

MIG 1g.18gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA H20 SXM5 141GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

H20X-141C

144384

1

1

3840x2400

1

H20X-70C

71680

2

2

3840x2400

1

H20X-35C

35840

4

4

3840x2400

1

H20X-28C

28672

5

5

3840x2400

1

H20X-17C

17408

8

8

3840x2400

1

H20X-14C

14336

10

10

3840x2400

1

H20X-8C

8192

16

16

3840x2400

1

H20X-7C

7168

20

20

3840x2400

1

H20X-4C

4096

32

32

3840x2400

1

MIG-Backed NVIDIA vGPU (C-Series) for NVIDIA H20 SXM5 96GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Slices per vGPU

Compute Instances per vGPU

Corresponding GPU Instance Profile

H20-7-96C

98304

1

7

7

MIG 7g.96gb

H20-4-48C

49152

1

4

4

MIG 4g.48gb

H20-3-48C

49152

2

3

3

MIG 3g.48gb

H20-2-24C

24576

3

2

2

MIG 2g.24gb

H20-1-24C [3]

24576

4

1

1

MIG 1g.24gb

H20-1-12C

12288

7

1

1

MIG 1g.12gb

H20-1-12CME [3]

12288

1

1

1

MIG 1g.12gb+me

Time-Sliced NVIDIA vGPU (C-Series) for NVIDIA H20 SXM5 96GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU in Equal-Size Mode

Maximum vGPUs per GPU in Mixed-Size Mode

Maximum Display Resolution [4]

Virtual Displays per vGPU

H20-96C

98304

1

1

3840x2400

1

H20-48C

49152

2

2

3840x2400

1

H20-24C

24576

4

2

3840x2400

1

H20-16C

16384

6

4

3840x2400

1

H20-12C

12288

8

4

3840x2400

1

H20-6C

6144

16

8

3840x2400

1

H20-4C

4096

24

8

3840x2400

1

NVIDIA Turing GPU Architecture#

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

Intended use cases:

  • vGPUs with more than 4096 MB of frame buffer: Training Workloads

  • vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: NVIDIA vGPU (C-Series)

These vGPU types support a single display with a fixed maximum resolution.

NVIDIA vGPU (C-Series) for NVIDIA Tesla T4#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Maximum Display Resolution [4]

Virtual Displays per vGPU

T4-16C

16384

1

3840x2400

1

T4-8C

8192

2

3840x2400

1

T4-4C

4096

4

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA Quadro RTX 6000 Passive#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Maximum Display Resolution [4]

Virtual Displays per vGPU

RTX6000P-24C

24576

1

3840x2400

1

RTX6000P-12C

12288

2

3840x2400

1

RTX6000P-8C

8192

3

3840x2400

1

RTX6000P-6C

6144

4

3840x2400

1

RTX6000P-4C

4096

6

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA Quadro RTX 8000 Passive#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Maximum Display Resolution [4]

Virtual Displays per vGPU

RTX8000P-48C

49152

1

3840x2400

1

RTX8000P-24C

24576

2

3840x2400

1

RTX8000P-16C

16384

3

3840x2400

1

RTX8000P-12C

12288

4

3840x2400

1

RTX8000P-8C

8192

6

3840x2400

1

RTX8000P-6C

6144

8

3840x2400

1

RTX8000P-4C

4096

8 [5]

3840x2400

1

NVIDIA Volta GPU Architecture#

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

Intended use cases:

  • vGPUs with more than 4096 MB of frame buffer: Training Workloads

  • vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: NVIDIA vGPU (C-Series)

These vGPU types support a single display with a fixed maximum resolution.

NVIDIA vGPU (C-Series) for NVIDIA Tesla V100 SXM2#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Maximum Display Resolution [4]

Virtual Displays per vGPU

V100X-16C

16384

1

3840x2400

1

V100X-8C

8192

2

3840x2400

1

V100X-4C

4096

4

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA Tesla V100 SXM2 32GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Maximum Display Resolution [4]

Virtual Displays per vGPU

V100DX-32C

32768

1

3840x2400

1

V100DX-16C

16384

2

3840x2400

1

V100DX-8C

8192

4

3840x2400

1

V100DX-4C

6144

8

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA Tesla V100 PCIe 32GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Maximum Display Resolution [4]

Virtual Displays per vGPU

V100D-32C

32768

1

3840x2400

1

V100D-16C

16384

2

3840x2400

1

V100D-8C

8192

4

3840x2400

1

V100D-4C

4096

8

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA Tesla V100S PCIe 32GB#

Virtual GPU Type

Frame Buffer (MB)

Maximum vGPUs per GPU

Maximum Display Resolution [4]

Virtual Displays per vGPU

V100S-32C

32768

1

3840x2400

1

V100S-16C

16384

2

3840x2400

1

V100S-8C

8192

4

3840x2400

1

V100S-4C

4096

8

3840x2400

1

NVIDIA vGPU (C-Series) for NVIDIA Tesla V100 FHHL#

Virtual GPU Type

Intended Use Case

Frame Buffer (MB)

Maximum vGPUs per GPU

Maximum vGPUs per Board

Maximum Display Resolution [4]

Virtual Displays per vGPU

V100L-16C

Training Workloads

16384

1

1

3840x2400

1

V100L-8C

Training Workloads

8192

2

2

3840x2400

1

V100L-4C

Inference Workloads

4096

4

4

3840x2400

1

Footnotes

  • NVIDIA HGX A100 4-GPU baseboard with four fully connected GPUs

  • NVIDIA HGX A100 8-GPU baseboards with eight fully connected GPUs

Fully connected means that each GPU is connected to every other GPU on the baseboard.