1.6. Double Precision Mathematical Functions
This section describes double precision mathematical functions. To use these functions you do not need to include any additional header files in your program.
Functions
- __device__ double acos ( double x )
- Calculate the arc cosine of the input argument.
- __device__ double acosh ( double x )
- Calculate the nonnegative inverse hyperbolic cosine of the input argument.
- __device__ double asin ( double x )
- Calculate the arc sine of the input argument.
- __device__ double asinh ( double x )
- Calculate the inverse hyperbolic sine of the input argument.
- __device__ double atan ( double x )
- Calculate the arc tangent of the input argument.
- __device__ double atan2 ( double y, double x )
- Calculate the arc tangent of the ratio of first and second input arguments.
- __device__ double atanh ( double x )
- Calculate the inverse hyperbolic tangent of the input argument.
- __device__ double cbrt ( double x )
- Calculate the cube root of the input argument.
- __device__ double ceil ( double x )
- Calculate ceiling of the input argument.
- __device__ double copysign ( double x, double y )
- Create value with given magnitude, copying sign of second value.
- __device__ double cos ( double x )
- Calculate the cosine of the input argument.
- __device__ double cosh ( double x )
- Calculate the hyperbolic cosine of the input argument.
- __device__ double cospi ( double x )
- Calculate the cosine of the input argument .
- __device__ double cyl_bessel_i0 ( double x )
- Calculate the value of the regular modified cylindrical Bessel function of order 0 for the input argument.
- __device__ double cyl_bessel_i1 ( double x )
- Calculate the value of the regular modified cylindrical Bessel function of order 1 for the input argument.
- __device__ double erf ( double x )
- Calculate the error function of the input argument.
- __device__ double erfc ( double x )
- Calculate the complementary error function of the input argument.
- __device__ double erfcinv ( double x )
- Calculate the inverse complementary error function of the input argument.
- __device__ double erfcx ( double x )
- Calculate the scaled complementary error function of the input argument.
- __device__ double erfinv ( double x )
- Calculate the inverse error function of the input argument.
- __device__ double exp ( double x )
- Calculate the base exponential of the input argument.
- __device__ double exp10 ( double x )
- Calculate the base 10 exponential of the input argument.
- __device__ double exp2 ( double x )
- Calculate the base 2 exponential of the input argument.
- __device__ double expm1 ( double x )
- Calculate the base exponential of the input argument, minus 1.
- __device__ double fabs ( double x )
- Calculate the absolute value of the input argument.
- __device__ double fdim ( double x, double y )
- Compute the positive difference between x and y.
- __device__ double floor ( double x )
- Calculate the largest integer less than or equal to x.
- __device__ double fma ( double x, double y, double z )
- Compute as a single operation.
- __device__ double fmax ( double , double )
- Determine the maximum numeric value of the arguments.
- __device__ double fmin ( double x, double y )
- Determine the minimum numeric value of the arguments.
- __device__ double fmod ( double x, double y )
- Calculate the double-precision floating-point remainder of x / y.
- __device__ double frexp ( double x, int* nptr )
- Extract mantissa and exponent of a floating-point value.
- __device__ double hypot ( double x, double y )
- Calculate the square root of the sum of squares of two arguments.
- __device__ int ilogb ( double x )
- Compute the unbiased integer exponent of the argument.
- __device__ __RETURN_TYPE isfinite ( double a )
- Determine whether argument is finite.
- __device__ __RETURN_TYPE isinf ( double a )
- Determine whether argument is infinite.
- __device__ __RETURN_TYPE isnan ( double a )
- Determine whether argument is a NaN.
- __device__ double j0 ( double x )
- Calculate the value of the Bessel function of the first kind of order 0 for the input argument.
- __device__ double j1 ( double x )
- Calculate the value of the Bessel function of the first kind of order 1 for the input argument.
- __device__ double jn ( int n, double x )
- Calculate the value of the Bessel function of the first kind of order n for the input argument.
- __device__ double ldexp ( double x, int exp )
- Calculate the value of .
- __device__ double lgamma ( double x )
- Calculate the natural logarithm of the absolute value of the gamma function of the input argument.
- __device__ long long int llrint ( double x )
- Round input to nearest integer value.
- __device__ long long int llround ( double x )
- Round to nearest integer value.
- __device__ double log ( double x )
- Calculate the base logarithm of the input argument.
- __device__ double log10 ( double x )
- Calculate the base 10 logarithm of the input argument.
- __device__ double log1p ( double x )
- Calculate the value of .
- __device__ double log2 ( double x )
- Calculate the base 2 logarithm of the input argument.
- __device__ double logb ( double x )
- Calculate the floating-point representation of the exponent of the input argument.
- __device__ long int lrint ( double x )
- Round input to nearest integer value.
- __device__ long int lround ( double x )
- Round to nearest integer value.
- __device__ double max ( const double a, const float b )
- Calculate the maximum value of the input double and float arguments.
- __device__ double max ( const float a, const double b )
- Calculate the maximum value of the input float and double arguments.
- __device__ double max ( const double a, const double b )
- Calculate the maximum value of the input float arguments.
- __device__ double min ( const double a, const float b )
- Calculate the minimum value of the input double and float arguments.
- __device__ double min ( const float a, const double b )
- Calculate the minimum value of the input float and double arguments.
- __device__ double min ( const double a, const double b )
- Calculate the minimum value of the input float arguments.
- __device__ double modf ( double x, double* iptr )
- Break down the input argument into fractional and integral parts.
- __device__ double nan ( const char* tagp )
- Returns "Not a Number" value.
- __device__ double nearbyint ( double x )
- Round the input argument to the nearest integer.
- __device__ double nextafter ( double x, double y )
- Return next representable double-precision floating-point value after argument x in the direction of y.
- __device__ double norm ( int dim, const double* p )
- Calculate the square root of the sum of squares of any number of coordinates.
- __device__ double norm3d ( double a, double b, double c )
- Calculate the square root of the sum of squares of three coordinates of the argument.
- __device__ double norm4d ( double a, double b, double c, double d )
- Calculate the square root of the sum of squares of four coordinates of the argument.
- __device__ double normcdf ( double x )
- Calculate the standard normal cumulative distribution function.
- __device__ double normcdfinv ( double x )
- Calculate the inverse of the standard normal cumulative distribution function.
- __device__ double pow ( double x, double y )
- Calculate the value of first argument to the power of second argument.
- __device__ double rcbrt ( double x )
- Calculate reciprocal cube root function.
- __device__ double remainder ( double x, double y )
- Compute double-precision floating-point remainder.
- __device__ double remquo ( double x, double y, int* quo )
- Compute double-precision floating-point remainder and part of quotient.
- __device__ double rhypot ( double x, double y )
- Calculate one over the square root of the sum of squares of two arguments.
- __device__ double rint ( double x )
- Round to nearest integer value in floating-point.
- __device__ double rnorm ( int dim, const double* p )
- Calculate the reciprocal of square root of the sum of squares of any number of coordinates.
- __device__ double rnorm3d ( double a, double b, double c )
- Calculate one over the square root of the sum of squares of three coordinates.
- __device__ double rnorm4d ( double a, double b, double c, double d )
- Calculate one over the square root of the sum of squares of four coordinates.
- __device__ double round ( double x )
- Round to nearest integer value in floating-point.
- __device__ double rsqrt ( double x )
- Calculate the reciprocal of the square root of the input argument.
- __device__ double scalbln ( double x, long int n )
- Scale floating-point input by integer power of two.
- __device__ double scalbn ( double x, int n )
- Scale floating-point input by integer power of two.
- __device__ __RETURN_TYPE signbit ( double a )
- Return the sign bit of the input.
- __device__ double sin ( double x )
- Calculate the sine of the input argument.
- __device__ void sincos ( double x, double* sptr, double* cptr )
- Calculate the sine and cosine of the first input argument.
- __device__ void sincospi ( double x, double* sptr, double* cptr )
- Calculate the sine and cosine of the first input argument .
- __device__ double sinh ( double x )
- Calculate the hyperbolic sine of the input argument.
- __device__ double sinpi ( double x )
- Calculate the sine of the input argument .
- __device__ double sqrt ( double x )
- Calculate the square root of the input argument.
- __device__ double tan ( double x )
- Calculate the tangent of the input argument.
- __device__ double tanh ( double x )
- Calculate the hyperbolic tangent of the input argument.
- __device__ double tgamma ( double x )
- Calculate the gamma function of the input argument.
- __device__ double trunc ( double x )
- Truncate input argument to the integral part.
- __device__ double y0 ( double x )
- Calculate the value of the Bessel function of the second kind of order 0 for the input argument.
- __device__ double y1 ( double x )
- Calculate the value of the Bessel function of the second kind of order 1 for the input argument.
- __device__ double yn ( int n, double x )
- Calculate the value of the Bessel function of the second kind of order n for the input argument.
Functions
- __device__ double acos ( double x )
-
Calculate the arc cosine of the input argument.
Returns
Result will be in radians, in the interval [0, ] for x inside [-1, +1].
- acos(1) returns +0.
- acos(x) returns NaN for x outside [-1, +1].
Description
Calculate the principal value of the arc cosine of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double acosh ( double x )
-
Calculate the nonnegative inverse hyperbolic cosine of the input argument.
Returns
Result will be in the interval [0, ].
- acosh(1) returns 0.
- acosh(x) returns NaN for x in the interval [ , 1).
- acosh( ) returns .
Description
Calculate the nonnegative inverse hyperbolic cosine of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double asin ( double x )
-
Calculate the arc sine of the input argument.
Returns
Result will be in radians, in the interval [- /2, + /2] for x inside [-1, +1].
- asin( ) returns .
- asin(x) returns NaN for x outside [-1, +1].
Description
Calculate the principal value of the arc sine of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double asinh ( double x )
-
Calculate the inverse hyperbolic sine of the input argument.
Returns
- asinh( ) returns .
- asinh( ) returns .
Description
Calculate the inverse hyperbolic sine of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double atan ( double x )
-
Calculate the arc tangent of the input argument.
Returns
Result will be in radians, in the interval [- /2, + /2].
- atan( ) returns .
- atan( ) returns /2.
Description
Calculate the principal value of the arc tangent of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double atan2 ( double y, double x )
-
Calculate the arc tangent of the ratio of first and second input arguments.
Returns
Result will be in radians, in the interval [- , + ].
- atan2( , -0) returns .
- atan2( , +0) returns .
- atan2( , x) returns for x < 0.
- atan2( , x) returns for x > 0.
- atan2(y, ) returns /2 for y < 0.
- atan2(y, ) returns /2 for y > 0.
- atan2( , ) returns for finite y > 0.
- atan2( , ) returns for finite y > 0.
- atan2( , x) returns /2 for finite x.
- atan2( , ) returns /4.
- atan2( , ) returns /4.
Description
Calculate the principal value of the arc tangent of the ratio of first and second input arguments y / x. The quadrant of the result is determined by the signs of inputs y and x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double atanh ( double x )
-
Calculate the inverse hyperbolic tangent of the input argument.
Returns
- atanh( ) returns .
- atanh( ) returns .
- atanh(x) returns NaN for x outside interval [-1, 1].
Description
Calculate the inverse hyperbolic tangent of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double cbrt ( double x )
-
Calculate the cube root of the input argument.
Returns
Returns .
- cbrt( ) returns .
- cbrt( ) returns .
Description
Calculate the cube root of x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double ceil ( double x )
-
Calculate ceiling of the input argument.
Returns
Returns expressed as a floating-point number.
- ceil( ) returns .
- ceil( ) returns .
Description
Compute the smallest integer value not less than x.
- __device__ double copysign ( double x, double y )
-
Create value with given magnitude, copying sign of second value.
Returns
Returns a value with the magnitude of x and the sign of y.
Description
Create a floating-point value with the magnitude x and the sign of y.
- __device__ double cos ( double x )
-
Calculate the cosine of the input argument.
Returns
- cos( ) returns 1.
- cos( ) returns NaN.
Description
Calculate the cosine of the input argument x (measured in radians).
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double cosh ( double x )
-
Calculate the hyperbolic cosine of the input argument.
Returns
- cosh( ) returns 1.
- cosh( ) returns .
Description
Calculate the hyperbolic cosine of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double cospi ( double x )
-
Calculate the cosine of the input argument .
Returns
- cospi( ) returns 1.
- cospi( ) returns NaN.
Description
Calculate the cosine of x (measured in radians), where x is the input argument.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double cyl_bessel_i0 ( double x )
-
Calculate the value of the regular modified cylindrical Bessel function of order 0 for the input argument.
Returns
Returns the value of the regular modified cylindrical Bessel function of order 0.
Description
Calculate the value of the regular modified cylindrical Bessel function of order 0 for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double cyl_bessel_i1 ( double x )
-
Calculate the value of the regular modified cylindrical Bessel function of order 1 for the input argument.
Returns
Returns the value of the regular modified cylindrical Bessel function of order 1.
Description
Calculate the value of the regular modified cylindrical Bessel function of order 1 for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double erf ( double x )
-
Calculate the error function of the input argument.
Returns
- erf( ) returns .
- erf( ) returns .
Description
Calculate the value of the error function for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double erfc ( double x )
-
Calculate the complementary error function of the input argument.
Returns
- erfc( ) returns 2.
- erfc( ) returns +0.
Description
Calculate the complementary error function of the input argument x, 1 - erf(x).
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double erfcinv ( double x )
-
Calculate the inverse complementary error function of the input argument.
Returns
- erfcinv( ) returns .
- erfcinv(2) returns .
- erfcinv(x) returns NaN for x outside [0, 2].
Description
Calculate the inverse complementary error function (x), of the input argument x in the interval [0, 2].
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double erfcx ( double x )
-
Calculate the scaled complementary error function of the input argument.
Returns
- erfcx( ) returns .
- erfcx( ) returns +0.
Description
Calculate the scaled complementary error function of the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double erfinv ( double x )
-
Calculate the inverse error function of the input argument.
Returns
- erfinv( ) returns .
- erfinv(1) returns .
- erfinv(-1) returns .
- erfinv(x) returns NaN for x outside [-1, +1].
Description
Calculate the inverse error function (x), of the input argument x in the interval [-1, 1].
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double exp ( double x )
-
Calculate the base exponential of the input argument.
Returns
- exp( ) returns 1.
- exp( ) returns +0.
- exp( ) returns .
Description
Calculate , the base exponential of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double exp10 ( double x )
-
Calculate the base 10 exponential of the input argument.
Returns
- exp10( ) returns 1.
- exp10( ) returns +0.
- exp10( ) returns .
Description
Calculate , the base 10 exponential of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double exp2 ( double x )
-
Calculate the base 2 exponential of the input argument.
Returns
- exp2( ) returns 1.
- exp2( ) returns +0.
- exp2( ) returns .
Description
Calculate , the base 2 exponential of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double expm1 ( double x )
-
Calculate the base exponential of the input argument, minus 1.
Returns
- expm1( ) returns .
- expm1( ) returns -1.
- expm1( ) returns .
Description
Calculate -1, the base exponential of the input argument x, minus 1.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double fabs ( double x )
-
Calculate the absolute value of the input argument.
Returns
Returns the absolute value of the input argument.
- fabs( ) returns .
- fabs( ) returns +0.
Description
Calculate the absolute value of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double fdim ( double x, double y )
-
Compute the positive difference between x and y.
Returns
Returns the positive difference between x and y.
- fdim(x, y) returns x - y if x > y.
- fdim(x, y) returns +0 if xy.
Description
Compute the positive difference between x and y. The positive difference is x - y when x > y and +0 otherwise.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ double floor ( double x )
-
Calculate the largest integer less than or equal to x.
Returns
Returns expressed as a floating-point number.
- floor( ) returns .
- floor( ) returns .
Description
Calculates the largest integer value which is less than or equal to x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double fma ( double x, double y, double z )
-
Compute as a single operation.
Returns
Returns the rounded value of as a single operation.
- fma( , , z) returns NaN.
- fma( , , z) returns NaN.
- fma(x, y, ) returns NaN if is an exact .
- fma(x, y, ) returns NaN if is an exact .
Description
Compute the value of as a single ternary operation. After computing the value to infinite precision, the value is rounded once.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double fmax ( double , double )
-
Determine the maximum numeric value of the arguments.
Returns
Returns the maximum numeric values of the arguments x and y.
- If both arguments are NaN, returns NaN.
- If one argument is NaN, returns the numeric argument.
Description
Determines the maximum numeric value of the arguments x and y. Treats NaN arguments as missing data. If one argument is a NaN and the other is legitimate numeric value, the numeric value is chosen.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double fmin ( double x, double y )
-
Determine the minimum numeric value of the arguments.
Returns
Returns the minimum numeric value of the arguments x and y.
- If both arguments are NaN, returns NaN.
- If one argument is NaN, returns the numeric argument.
Description
Determines the minimum numeric value of the arguments x and y. Treats NaN arguments as missing data. If one argument is a NaN and the other is legitimate numeric value, the numeric value is chosen.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double fmod ( double x, double y )
-
Calculate the double-precision floating-point remainder of x / y.
Returns
- Returns the floating-point remainder of x / y.
- fmod( , y) returns if y is not zero.
- fmod(x, ) returns x if x is finite.
- fmod(x, y) returns NaN if x is or y is zero.
- If either argument is NaN, NaN is returned.
Description
Calculate the double-precision floating-point remainder of x / y. The floating-point remainder of the division operation x / y calculated by this function is exactly the value x - n*y, where n is x / y with its fractional part truncated. The computed value will have the same sign as x, and its magnitude will be less than the magnitude of y.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double frexp ( double x, int* nptr )
-
Extract mantissa and exponent of a floating-point value.
Returns
Returns the fractional component m.
- frexp( , nptr) returns and stores zero in the location pointed to by nptr.
- frexp( , nptr) returns and stores an unspecified value in the location to which nptr points.
- frexp(NaN, y) returns a NaN and stores an unspecified value in the location to which nptr points.
Description
Decompose the floating-point value x into a component m for the normalized fraction element and another term n for the exponent. The absolute value of m will be greater than or equal to 0.5 and less than 1.0 or it will be equal to 0; . The integer exponent n will be stored in the location to which nptr points.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double hypot ( double x, double y )
-
Calculate the square root of the sum of squares of two arguments.
Returns
Returns the length of the hypotenuse .
- hypot(x,y), hypot(y,x), and hypot(x, -y) are equivalent.
- hypot(x, ) is equivalent to fabs(x).
- hypot( ,y) returns , even if y is a NaN.
Description
Calculate the length of the hypotenuse of a right triangle whose two sides have lengths x and y without undue overflow or underflow.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ int ilogb ( double x )
-
Compute the unbiased integer exponent of the argument.
Returns
- If successful, returns the unbiased exponent of the argument.
- ilogb( ) returns INT_MIN.
- ilogb(NaN) returns INT_MIN.
- ilogb( ) returns INT_MAX.
- Note: above behavior does not take into account FP_ILOGB0 nor FP_ILOGBNAN.
Description
Calculates the unbiased integer exponent of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ __RETURN_TYPE isfinite ( double a )
-
Determine whether argument is finite.
Returns
- With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns true if and only if a is a finite value.
- With other host compilers: __RETURN_TYPE is 'int'. Returns a nonzero value if and only if a is a finite value.
Description
Determine whether the floating-point value a is a finite value (zero, subnormal, or normal and not infinity or NaN).
- __device__ __RETURN_TYPE isinf ( double a )
-
Determine whether argument is infinite.
Returns
- With Visual Studio 2013 host compiler: Returns true if and only if a is an infinite value.
- With other host compilers: Returns a nonzero value if and only if a is an infinite value.
Description
Determine whether the floating-point value a is an infinite value (positive or negative).
- __device__ __RETURN_TYPE isnan ( double a )
-
Determine whether argument is a NaN.
Returns
- With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns true if and only if a is a NaN value.
- With other host compilers: __RETURN_TYPE is 'int'. Returns a nonzero value if and only if a is a NaN value.
Description
Determine whether the floating-point value a is a NaN.
- __device__ double j0 ( double x )
-
Calculate the value of the Bessel function of the first kind of order 0 for the input argument.
Returns
Returns the value of the Bessel function of the first kind of order 0.
- j0( ) returns +0.
- j0(NaN) returns NaN.
Description
Calculate the value of the Bessel function of the first kind of order 0 for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double j1 ( double x )
-
Calculate the value of the Bessel function of the first kind of order 1 for the input argument.
Returns
Returns the value of the Bessel function of the first kind of order 1.
- j1( ) returns .
- j1( ) returns .
- j1(NaN) returns NaN.
Description
Calculate the value of the Bessel function of the first kind of order 1 for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double jn ( int n, double x )
-
Calculate the value of the Bessel function of the first kind of order n for the input argument.
Returns
Returns the value of the Bessel function of the first kind of order n.
- jn(n, NaN) returns NaN.
- jn(n, x) returns NaN for n < 0.
- jn(n, ) returns +0.
Description
Calculate the value of the Bessel function of the first kind of order n for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double ldexp ( double x, int exp )
-
Calculate the value of .
Returns
- ldexp(x, exp) is equivalent to scalbn(x, exp).
Description
Calculate the value of of the input arguments x and exp.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double lgamma ( double x )
-
Calculate the natural logarithm of the absolute value of the gamma function of the input argument.
Returns
- lgamma(1) returns +0.
- lgamma(2) returns +0.
- lgamma(x) returns if x 0 and x is an integer.
- lgamma( ) returns .
- lgamma( ) returns .
Description
Calculate the natural logarithm of the absolute value of the gamma function of the input argument x, namely the value of
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ long long int llrint ( double x )
-
Round input to nearest integer value.
Returns
Returns rounded integer value.
Description
Round x to the nearest integer value, with halfway cases rounded to the nearest even integer value. If the result is outside the range of the return type, the behavior is undefined.
- __device__ long long int llround ( double x )
-
Round to nearest integer value.
Returns
Returns rounded integer value.
Description
Round x to the nearest integer value, with halfway cases rounded away from zero. If the result is outside the range of the return type, the behavior is undefined.
Note:This function may be slower than alternate rounding methods. See llrint().
- __device__ double log ( double x )
-
Calculate the base logarithm of the input argument.
Returns
- log( ) returns .
- log(1) returns +0.
- log(x) returns NaN for x < 0.
- log( ) returns .
Description
Calculate the base logarithm of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double log10 ( double x )
-
Calculate the base 10 logarithm of the input argument.
Returns
- log10( ) returns .
- log10(1) returns +0.
- log10(x) returns NaN for x < 0.
- log10( ) returns .
Description
Calculate the base 10 logarithm of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double log1p ( double x )
-
Calculate the value of .
Returns
- log1p( ) returns .
- log1p(-1) returns .
- log1p(x) returns NaN for x < -1.
- log1p( ) returns .
Description
Calculate the value of of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double log2 ( double x )
-
Calculate the base 2 logarithm of the input argument.
Returns
- log2( ) returns .
- log2(1) returns +0.
- log2(x) returns NaN for x < 0.
- log2( ) returns .
Description
Calculate the base 2 logarithm of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double logb ( double x )
-
Calculate the floating-point representation of the exponent of the input argument.
Returns
- logb( ) returns .
- logb( ) returns .
Description
Calculate the floating-point representation of the exponent of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ long int lrint ( double x )
-
Round input to nearest integer value.
Returns
Returns rounded integer value.
Description
Round x to the nearest integer value, with halfway cases rounded to the nearest even integer value. If the result is outside the range of the return type, the behavior is undefined.
- __device__ long int lround ( double x )
-
Round to nearest integer value.
Returns
Returns rounded integer value.
Description
Round x to the nearest integer value, with halfway cases rounded away from zero. If the result is outside the range of the return type, the behavior is undefined.
Note:This function may be slower than alternate rounding methods. See lrint().
- __device__ double max ( const double a, const float b )
-
Calculate the maximum value of the input double and float arguments.
Description
Convert float argument b to double, followed by fmax().
Note, this is different from std:: specification
- __device__ double max ( const float a, const double b )
-
Calculate the maximum value of the input float and double arguments.
Description
Convert float argument a to double, followed by fmax().
Note, this is different from std:: specification
- __device__ double max ( const double a, const double b )
-
Calculate the maximum value of the input float arguments.
Description
Calculate the maximum value of the arguments a and b. Behavior is equivalent to fmax() function.
Note, this is different from std:: specification
- __device__ double min ( const double a, const float b )
-
Calculate the minimum value of the input double and float arguments.
Description
Convert float argument b to double, followed by fmin().
Note, this is different from std:: specification
- __device__ double min ( const float a, const double b )
-
Calculate the minimum value of the input float and double arguments.
Description
Convert float argument a to double, followed by fmin().
Note, this is different from std:: specification
- __device__ double min ( const double a, const double b )
-
Calculate the minimum value of the input float arguments.
Description
Calculate the minimum value of the arguments a and b. Behavior is equivalent to fmin() function.
Note, this is different from std:: specification
- __device__ double modf ( double x, double* iptr )
-
Break down the input argument into fractional and integral parts.
Returns
- modf( , iptr) returns a result with the same sign as x.
- modf( , iptr) returns and stores in the object pointed to by iptr.
- modf(NaN, iptr) stores a NaN in the object pointed to by iptr and returns a NaN.
Description
Break down the argument x into fractional and integral parts. The integral part is stored in the argument iptr. Fractional and integral parts are given the same sign as the argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double nan ( const char* tagp )
-
Returns "Not a Number" value.
Returns
- nan(tagp) returns NaN.
Description
Return a representation of a quiet NaN. Argument tagp selects one of the possible representations.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double nearbyint ( double x )
-
Round the input argument to the nearest integer.
Returns
- nearbyint( ) returns .
- nearbyint( ) returns .
Description
Round argument x to an integer value in double precision floating-point format. Uses round to nearest rounding, with ties rounding to even.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double nextafter ( double x, double y )
-
Return next representable double-precision floating-point value after argument x in the direction of y.
Returns
- nextafter(x, y) = y if x equals y.
- nextafter(x, y) = NaN if either x or y are NaN.
Description
Calculate the next representable double-precision floating-point value following x in the direction of y. For example, if y is greater than x, nextafter() returns the smallest representable number greater than x
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double norm ( int dim, const double* p )
-
Calculate the square root of the sum of squares of any number of coordinates.
Returns
Returns the length of the dim-D vector .
- In the presence of an exactly infinite coordinate is returned, even if there are NaNs.
Description
Calculate the length of a vector p, dimension of which is passed as an argument without undue overflow or underflow.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double norm3d ( double a, double b, double c )
-
Calculate the square root of the sum of squares of three coordinates of the argument.
Returns
Returns the length of 3D vector .
- In the presence of an exactly infinite coordinate is returned, even if there are NaNs.
Description
Calculate the length of three dimensional vector in Euclidean space without undue overflow or underflow.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double norm4d ( double a, double b, double c, double d )
-
Calculate the square root of the sum of squares of four coordinates of the argument.
Returns
Returns the length of 4D vector .
- In the presence of an exactly infinite coordinate is returned, even if there are NaNs.
Description
Calculate the length of four dimensional vector in Euclidean space without undue overflow or underflow.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double normcdf ( double x )
-
Calculate the standard normal cumulative distribution function.
Returns
- normcdf( ) returns 1.
- normcdf( ) returns +0.
Description
Calculate the cumulative distribution function of the standard normal distribution for input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double normcdfinv ( double x )
-
Calculate the inverse of the standard normal cumulative distribution function.
Returns
- normcdfinv( ) returns .
- normcdfinv(1) returns .
- normcdfinv(x) returns NaN if x is not in the interval [0,1].
Description
Calculate the inverse of the standard normal cumulative distribution function for input argument x, . The function is defined for input values in the interval .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double pow ( double x, double y )
-
Calculate the value of first argument to the power of second argument.
Returns
- pow( , y) returns for y an odd integer less than 0.
- pow( , y) returns for y less than 0 and not an odd integer.
- pow( , y) returns for y an odd integer greater than 0.
- pow( , y) returns +0 for y > 0 and not an odd integer.
- pow(-1, ) returns 1.
- pow(+1, y) returns 1 for any y, even a NaN.
- pow(x, ) returns 1 for any x, even a NaN.
- pow(x, y) returns a NaN for finite x < 0 and finite non-integer y.
- pow(x, ) returns for .
- pow(x, ) returns +0 for .
- pow(x, ) returns +0 for .
- pow(x, ) returns for .
- pow( , y) returns -0 for y an odd integer less than 0.
- pow( , y) returns +0 for y < 0 and not an odd integer.
- pow( , y) returns for y an odd integer greater than 0.
- pow( , y) returns for y > 0 and not an odd integer.
- pow( , y) returns +0 for y < 0.
- pow( , y) returns for y > 0.
Description
Calculate the value of x to the power of y.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double rcbrt ( double x )
-
Calculate reciprocal cube root function.
Returns
- rcbrt( ) returns .
- rcbrt( ) returns .
Description
Calculate reciprocal cube root function of x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double remainder ( double x, double y )
-
Compute double-precision floating-point remainder.
Returns
- remainder(x, ) returns NaN.
- remainder( , y) returns NaN.
- remainder(x, ) returns x for finite x.
Description
Compute double-precision floating-point remainder r of dividing x by y for nonzero y. Thus . The value n is the integer value nearest . In the case when , the even n value is chosen.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double remquo ( double x, double y, int* quo )
-
Compute double-precision floating-point remainder and part of quotient.
Returns
Returns the remainder.
- remquo(x, , quo) returns NaN and stores an unspecified value in the location to which quo points.
- remquo( , y, quo) returns NaN and stores an unspecified value in the location to which quo points.
- remquo(x, y, quo) returns NaN and stores an unspecified value in the location to which quo points if either of x or y is NaN.
- remquo(x, , quo) returns x and stores zero in the location to which quo points for finite x.
Description
Compute a double-precision floating-point remainder in the same way as the remainder() function. Argument quo returns part of quotient upon division of x by y. Value quo has the same sign as and may not be the exact quotient but agrees with the exact quotient in the low order 3 bits.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double rhypot ( double x, double y )
-
Calculate one over the square root of the sum of squares of two arguments.
Returns
Returns one over the length of the hypotenuse .
- rhypot(x,y), rhypot(y,x), and rhypot(x, -y) are equivalent.
- rhypot( ,y) returns +0, even if y is a NaN.
Description
Calculate one over the length of the hypotenuse of a right triangle whose two sides have lengths x and y without undue overflow or underflow.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double rint ( double x )
-
Round to nearest integer value in floating-point.
Returns
Returns rounded integer value.
- rint( ) returns .
- rint( ) returns .
Description
Round x to the nearest integer value in floating-point format, with halfway cases rounded to the nearest even integer value.
- __device__ double rnorm ( int dim, const double* p )
-
Calculate the reciprocal of square root of the sum of squares of any number of coordinates.
Returns
Returns one over the length of the vector .
- In the presence of an exactly infinite coordinate is returned, even if there are NaNs.
Description
Calculates one over the length of vector p, dimension of which is passed as an argument, in Euclidean space without undue overflow or underflow.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double rnorm3d ( double a, double b, double c )
-
Calculate one over the square root of the sum of squares of three coordinates.
Returns
Returns one over the length of the 3D vector .
- In the presence of an exactly infinite coordinate is returned, even if there are NaNs.
Description
Calculate one over the length of three dimensional vector in Euclidean space without undue overflow or underflow.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double rnorm4d ( double a, double b, double c, double d )
-
Calculate one over the square root of the sum of squares of four coordinates.
Returns
Returns one over the length of the 3D vector .
- In the presence of an exactly infinite coordinate is returned, even if there are NaNs.
Description
Calculate one over the length of four dimensional vector in Euclidean space without undue overflow or underflow.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double round ( double x )
-
Round to nearest integer value in floating-point.
Returns
Returns rounded integer value.
- round( ) returns .
- round( ) returns .
Description
Round x to the nearest integer value in floating-point format, with halfway cases rounded away from zero.
Note:This function may be slower than alternate rounding methods. See rint().
- __device__ double rsqrt ( double x )
-
Calculate the reciprocal of the square root of the input argument.
Returns
Returns .
- rsqrt( ) returns +0.
- rsqrt( ) returns .
- rsqrt(x) returns NaN if x is less than 0.
Description
Calculate the reciprocal of the nonnegative square root of x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double scalbln ( double x, long int n )
-
Scale floating-point input by integer power of two.
Returns
Returns x * .
- scalbln( , n) returns .
- scalbln(x, 0) returns x.
- scalbln( , n) returns .
Description
Scale x by by efficient manipulation of the floating-point exponent.
- __device__ double scalbn ( double x, int n )
-
Scale floating-point input by integer power of two.
Returns
Returns x * .
- scalbn( , n) returns .
- scalbn(x, 0) returns x.
- scalbn( , n) returns .
Description
Scale x by by efficient manipulation of the floating-point exponent.
- __device__ __RETURN_TYPE signbit ( double a )
-
Return the sign bit of the input.
Returns
Reports the sign bit of all values including infinities, zeros, and NaNs.
- With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns true if and only if a is negative.
- With other host compilers: __RETURN_TYPE is 'int'. Returns a nonzero value if and only if a is negative.
Description
Determine whether the floating-point value a is negative.
- __device__ double sin ( double x )
-
Calculate the sine of the input argument.
Returns
- sin( ) returns .
- sin( ) returns NaN.
Description
Calculate the sine of the input argument x (measured in radians).
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ void sincos ( double x, double* sptr, double* cptr )
-
Calculate the sine and cosine of the first input argument.
Returns
- none
Description
Calculate the sine and cosine of the first input argument x (measured in radians). The results for sine and cosine are written into the second argument, sptr, and, respectively, third argument, cptr.
See also:
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ void sincospi ( double x, double* sptr, double* cptr )
-
Calculate the sine and cosine of the first input argument .
Returns
- none
Description
Calculate the sine and cosine of the first input argument, x (measured in radians), . The results for sine and cosine are written into the second argument, sptr, and, respectively, third argument, cptr.
See also:
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double sinh ( double x )
-
Calculate the hyperbolic sine of the input argument.
Returns
- sinh( ) returns .
- sinh( ) returns .
Description
Calculate the hyperbolic sine of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double sinpi ( double x )
-
Calculate the sine of the input argument .
Returns
- sinpi( ) returns .
- sinpi( ) returns NaN.
Description
Calculate the sine of x (measured in radians), where x is the input argument.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double sqrt ( double x )
-
Calculate the square root of the input argument.
Returns
Returns .
- sqrt( ) returns .
- sqrt( ) returns .
- sqrt(x) returns NaN if x is less than 0.
Description
Calculate the nonnegative square root of x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double tan ( double x )
-
Calculate the tangent of the input argument.
Returns
- tan( ) returns .
- tan( ) returns NaN.
Description
Calculate the tangent of the input argument x (measured in radians).
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double tanh ( double x )
-
Calculate the hyperbolic tangent of the input argument.
Returns
- tanh( ) returns .
- tanh( ) returns .
Description
Calculate the hyperbolic tangent of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double tgamma ( double x )
-
Calculate the gamma function of the input argument.
Returns
- tgamma( ) returns .
- tgamma(2) returns +1.
- tgamma(x) returns NaN if x < 0 and x is an integer.
- tgamma( ) returns NaN.
- tgamma( ) returns .
Description
Calculate the gamma function of the input argument x, namely the value of .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double trunc ( double x )
-
Truncate input argument to the integral part.
Returns
Returns truncated integer value.
- trunc( ) returns .
- trunc( ) returns .
Description
Round x to the nearest integer value that does not exceed x in magnitude.
- __device__ double y0 ( double x )
-
Calculate the value of the Bessel function of the second kind of order 0 for the input argument.
Returns
Returns the value of the Bessel function of the second kind of order 0.
- y0( ) returns .
- y0(x) returns NaN for x < 0.
- y0( ) returns +0.
- y0(NaN) returns NaN.
Description
Calculate the value of the Bessel function of the second kind of order 0 for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double y1 ( double x )
-
Calculate the value of the Bessel function of the second kind of order 1 for the input argument.
Returns
Returns the value of the Bessel function of the second kind of order 1.
- y1( ) returns .
- y1(x) returns NaN for x < 0.
- y1( ) returns +0.
- y1(NaN) returns NaN.
Description
Calculate the value of the Bessel function of the second kind of order 1 for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.
- __device__ double yn ( int n, double x )
-
Calculate the value of the Bessel function of the second kind of order n for the input argument.
Returns
Returns the value of the Bessel function of the second kind of order n.
- yn(n, x) returns NaN for n < 0.
- yn(n, ) returns .
- yn(n, x) returns NaN for x < 0.
- yn(n, ) returns +0.
- yn(n, NaN) returns NaN.
Description
Calculate the value of the Bessel function of the second kind of order n for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Double-Precision Floating-Point Functions section.