1.5. Single Precision Mathematical Functions
This section describes single precision mathematical functions. To use these functions you do not need to include any additional header files in your program.
Functions
- __device__ float acosf ( float x )
- Calculate the arc cosine of the input argument.
- __device__ float acoshf ( float x )
- Calculate the nonnegative inverse hyperbolic cosine of the input argument.
- __device__ float asinf ( float x )
- Calculate the arc sine of the input argument.
- __device__ float asinhf ( float x )
- Calculate the inverse hyperbolic sine of the input argument.
- __device__ float atan2f ( float y, float x )
- Calculate the arc tangent of the ratio of first and second input arguments.
- __device__ float atanf ( float x )
- Calculate the arc tangent of the input argument.
- __device__ float atanhf ( float x )
- Calculate the inverse hyperbolic tangent of the input argument.
- __device__ float cbrtf ( float x )
- Calculate the cube root of the input argument.
- __device__ float ceilf ( float x )
- Calculate ceiling of the input argument.
- __device__ float copysignf ( float x, float y )
- Create value with given magnitude, copying sign of second value.
- __device__ float cosf ( float x )
- Calculate the cosine of the input argument.
- __device__ float coshf ( float x )
- Calculate the hyperbolic cosine of the input argument.
- __device__ float cospif ( float x )
- Calculate the cosine of the input argument .
- __device__ float cyl_bessel_i0f ( float x )
- Calculate the value of the regular modified cylindrical Bessel function of order 0 for the input argument.
- __device__ float cyl_bessel_i1f ( float x )
- Calculate the value of the regular modified cylindrical Bessel function of order 1 for the input argument.
- __device__ float erfcf ( float x )
- Calculate the complementary error function of the input argument.
- __device__ float erfcinvf ( float x )
- Calculate the inverse complementary error function of the input argument.
- __device__ float erfcxf ( float x )
- Calculate the scaled complementary error function of the input argument.
- __device__ float erff ( float x )
- Calculate the error function of the input argument.
- __device__ float erfinvf ( float x )
- Calculate the inverse error function of the input argument.
- __device__ float exp10f ( float x )
- Calculate the base 10 exponential of the input argument.
- __device__ float exp2f ( float x )
- Calculate the base 2 exponential of the input argument.
- __device__ float expf ( float x )
- Calculate the base exponential of the input argument.
- __device__ float expm1f ( float x )
- Calculate the base exponential of the input argument, minus 1.
- __device__ float fabsf ( float x )
- Calculate the absolute value of its argument.
- __device__ float fdimf ( float x, float y )
- Compute the positive difference between x and y.
- __device__ float fdividef ( float x, float y )
- Divide two floating-point values.
- __device__ float floorf ( float x )
- Calculate the largest integer less than or equal to x.
- __device__ float fmaf ( float x, float y, float z )
- Compute as a single operation.
- __device__ float fmaxf ( float x, float y )
- Determine the maximum numeric value of the arguments.
- __device__ float fminf ( float x, float y )
- Determine the minimum numeric value of the arguments.
- __device__ float fmodf ( float x, float y )
- Calculate the floating-point remainder of x / y.
- __device__ float frexpf ( float x, int* nptr )
- Extract mantissa and exponent of a floating-point value.
- __device__ float hypotf ( float x, float y )
- Calculate the square root of the sum of squares of two arguments.
- __device__ int ilogbf ( float x )
- Compute the unbiased integer exponent of the argument.
- __device__ __RETURN_TYPE isfinite ( float a )
- Determine whether argument is finite.
- __device__ __RETURN_TYPE isinf ( float a )
- Determine whether argument is infinite.
- __device__ __RETURN_TYPE isnan ( float a )
- Determine whether argument is a NaN.
- __device__ float j0f ( float x )
- Calculate the value of the Bessel function of the first kind of order 0 for the input argument.
- __device__ float j1f ( float x )
- Calculate the value of the Bessel function of the first kind of order 1 for the input argument.
- __device__ float jnf ( int n, float x )
- Calculate the value of the Bessel function of the first kind of order n for the input argument.
- __device__ float ldexpf ( float x, int exp )
- Calculate the value of .
- __device__ float lgammaf ( float x )
- Calculate the natural logarithm of the absolute value of the gamma function of the input argument.
- __device__ long long int llrintf ( float x )
- Round input to nearest integer value.
- __device__ long long int llroundf ( float x )
- Round to nearest integer value.
- __device__ float log10f ( float x )
- Calculate the base 10 logarithm of the input argument.
- __device__ float log1pf ( float x )
- Calculate the value of .
- __device__ float log2f ( float x )
- Calculate the base 2 logarithm of the input argument.
- __device__ float logbf ( float x )
- Calculate the floating-point representation of the exponent of the input argument.
- __device__ float logf ( float x )
- Calculate the natural logarithm of the input argument.
- __device__ long int lrintf ( float x )
- Round input to nearest integer value.
- __device__ long int lroundf ( float x )
- Round to nearest integer value.
- __device__ float max ( const float a, const float b )
- Calculate the maximum value of the input float arguments.
- __device__ float min ( const float a, const float b )
- Calculate the minimum value of the input float arguments.
- __device__ float modff ( float x, float* iptr )
- Break down the input argument into fractional and integral parts.
- __device__ float nanf ( const char* tagp )
- Returns "Not a Number" value.
- __device__ float nearbyintf ( float x )
- Round the input argument to the nearest integer.
- __device__ float nextafterf ( float x, float y )
- Return next representable single-precision floating-point value after argument x in the direction of y.
- __device__ float norm3df ( float a, float b, float c )
- Calculate the square root of the sum of squares of three coordinates of the argument.
- __device__ float norm4df ( float a, float b, float c, float d )
- Calculate the square root of the sum of squares of four coordinates of the argument.
- __device__ float normcdff ( float x )
- Calculate the standard normal cumulative distribution function.
- __device__ float normcdfinvf ( float x )
- Calculate the inverse of the standard normal cumulative distribution function.
- __device__ float normf ( int dim, const float* p )
- Calculate the square root of the sum of squares of any number of coordinates.
- __device__ float powf ( float x, float y )
- Calculate the value of first argument to the power of second argument.
- __device__ float rcbrtf ( float x )
- Calculate reciprocal cube root function.
- __device__ float remainderf ( float x, float y )
- Compute single-precision floating-point remainder.
- __device__ float remquof ( float x, float y, int* quo )
- Compute single-precision floating-point remainder and part of quotient.
- __device__ float rhypotf ( float x, float y )
- Calculate one over the square root of the sum of squares of two arguments.
- __device__ float rintf ( float x )
- Round input to nearest integer value in floating-point.
- __device__ float rnorm3df ( float a, float b, float c )
- Calculate one over the square root of the sum of squares of three coordinates.
- __device__ float rnorm4df ( float a, float b, float c, float d )
- Calculate one over the square root of the sum of squares of four coordinates.
- __device__ float rnormf ( int dim, const float* p )
- Calculate the reciprocal of square root of the sum of squares of any number of coordinates.
- __device__ float roundf ( float x )
- Round to nearest integer value in floating-point.
- __device__ float rsqrtf ( float x )
- Calculate the reciprocal of the square root of the input argument.
- __device__ float scalblnf ( float x, long int n )
- Scale floating-point input by integer power of two.
- __device__ float scalbnf ( float x, int n )
- Scale floating-point input by integer power of two.
- __device__ __RETURN_TYPE signbit ( float a )
- Return the sign bit of the input.
- __device__ void sincosf ( float x, float* sptr, float* cptr )
- Calculate the sine and cosine of the first input argument.
- __device__ void sincospif ( float x, float* sptr, float* cptr )
- Calculate the sine and cosine of the first input argument .
- __device__ float sinf ( float x )
- Calculate the sine of the input argument.
- __device__ float sinhf ( float x )
- Calculate the hyperbolic sine of the input argument.
- __device__ float sinpif ( float x )
- Calculate the sine of the input argument .
- __device__ float sqrtf ( float x )
- Calculate the square root of the input argument.
- __device__ float tanf ( float x )
- Calculate the tangent of the input argument.
- __device__ float tanhf ( float x )
- Calculate the hyperbolic tangent of the input argument.
- __device__ float tgammaf ( float x )
- Calculate the gamma function of the input argument.
- __device__ float truncf ( float x )
- Truncate input argument to the integral part.
- __device__ float y0f ( float x )
- Calculate the value of the Bessel function of the second kind of order 0 for the input argument.
- __device__ float y1f ( float x )
- Calculate the value of the Bessel function of the second kind of order 1 for the input argument.
- __device__ float ynf ( int n, float x )
- Calculate the value of the Bessel function of the second kind of order n for the input argument.
Functions
- __device__ float acosf ( float x )
-
Calculate the arc cosine of the input argument.
Returns
Result will be in radians, in the interval [0, ] for x inside [-1, +1].
- acosf(1) returns +0.
- acosf(x) returns NaN for x outside [-1, +1].
Description
Calculate the principal value of the arc cosine of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float acoshf ( float x )
-
Calculate the nonnegative inverse hyperbolic cosine of the input argument.
Returns
Result will be in the interval [0, ].
- acoshf(1) returns 0.
- acoshf(x) returns NaN for x in the interval [ , 1).
- acoshf( ) returns .
Description
Calculate the nonnegative inverse hyperbolic cosine of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float asinf ( float x )
-
Calculate the arc sine of the input argument.
Returns
Result will be in radians, in the interval [- , + ] for x inside [-1, +1].
- asinf( ) returns .
- asinf(x) returns NaN for x outside [-1, +1].
Description
Calculate the principal value of the arc sine of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float asinhf ( float x )
-
Calculate the inverse hyperbolic sine of the input argument.
Returns
- asinhf( ) returns .
- asinhf( ) returns .
Description
Calculate the inverse hyperbolic sine of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float atan2f ( float y, float x )
-
Calculate the arc tangent of the ratio of first and second input arguments.
Returns
Result will be in radians, in the interval [- , + ].
- atan2f( , -0) returns .
- atan2f( , +0) returns .
- atan2f( , x) returns for x < 0.
- atan2f( , x) returns for x > 0.
- atan2f(y, ) returns /2 for y < 0.
- atan2f(y, ) returns /2 for y > 0.
- atan2f( , ) returns for finite y > 0.
- atan2f( , ) returns for finite y > 0.
- atan2f( , x) returns /2 for finite x.
- atan2f( , ) returns /4.
- atan2f( , ) returns /4.
Description
Calculate the principal value of the arc tangent of the ratio of first and second input arguments y / x. The quadrant of the result is determined by the signs of inputs y and x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float atanf ( float x )
-
Calculate the arc tangent of the input argument.
Returns
Result will be in radians, in the interval [- , + ].
- atanf( ) returns .
- atanf( ) returns /2.
Description
Calculate the principal value of the arc tangent of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float atanhf ( float x )
-
Calculate the inverse hyperbolic tangent of the input argument.
Returns
- atanhf( ) returns .
- atanhf( ) returns .
- atanhf(x) returns NaN for x outside interval [-1, 1].
Description
Calculate the inverse hyperbolic tangent of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float cbrtf ( float x )
-
Calculate the cube root of the input argument.
Returns
Returns .
- cbrtf( ) returns .
- cbrtf( ) returns .
Description
Calculate the cube root of x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float ceilf ( float x )
-
Calculate ceiling of the input argument.
Returns
Returns expressed as a floating-point number.
- ceilf( ) returns .
- ceilf( ) returns .
Description
Compute the smallest integer value not less than x.
- __device__ float copysignf ( float x, float y )
-
Create value with given magnitude, copying sign of second value.
Returns
Returns a value with the magnitude of x and the sign of y.
Description
Create a floating-point value with the magnitude x and the sign of y.
- __device__ float cosf ( float x )
-
Calculate the cosine of the input argument.
Returns
- cosf( ) returns 1.
- cosf( ) returns NaN.
Description
Calculate the cosine of the input argument x (measured in radians).
Note:-
For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C++ Programming Guide, Mathematical Functions Appendix, Intrinsic Functions section for a complete list of functions affected.
- __device__ float coshf ( float x )
-
Calculate the hyperbolic cosine of the input argument.
Returns
- coshf( ) returns 1.
- coshf( ) returns .
Description
Calculate the hyperbolic cosine of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float cospif ( float x )
-
Calculate the cosine of the input argument .
Returns
- cospif( ) returns 1.
- cospif( ) returns NaN.
Description
Calculate the cosine of x (measured in radians), where x is the input argument.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float cyl_bessel_i0f ( float x )
-
Calculate the value of the regular modified cylindrical Bessel function of order 0 for the input argument.
Returns
Returns the value of the regular modified cylindrical Bessel function of order 0.
Description
Calculate the value of the regular modified cylindrical Bessel function of order 0 for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float cyl_bessel_i1f ( float x )
-
Calculate the value of the regular modified cylindrical Bessel function of order 1 for the input argument.
Returns
Returns the value of the regular modified cylindrical Bessel function of order 1.
Description
Calculate the value of the regular modified cylindrical Bessel function of order 1 for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float erfcf ( float x )
-
Calculate the complementary error function of the input argument.
Returns
- erfcf( ) returns 2.
- erfcf( ) returns +0.
Description
Calculate the complementary error function of the input argument x, 1 - erf(x).
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float erfcinvf ( float x )
-
Calculate the inverse complementary error function of the input argument.
Returns
- erfcinvf( ) returns .
- erfcinvf(2) returns .
- erfcinvf(x) returns NaN for x outside [0, 2].
Description
Calculate the inverse complementary error function (x), of the input argument x in the interval [0, 2].
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float erfcxf ( float x )
-
Calculate the scaled complementary error function of the input argument.
Returns
- erfcxf( ) returns .
- erfcxf( ) returns +0.
Description
Calculate the scaled complementary error function of the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float erff ( float x )
-
Calculate the error function of the input argument.
Returns
- erff( ) returns .
- erff( ) returns .
Description
Calculate the value of the error function for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float erfinvf ( float x )
-
Calculate the inverse error function of the input argument.
Returns
- erfinvf( ) returns .
- erfinvf(1) returns .
- erfinvf(-1) returns .
- erfinvf(x) returns NaN for x outside [-1, +1].
Description
Calculate the inverse error function (x), of the input argument x in the interval [-1, 1].
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float exp10f ( float x )
-
Calculate the base 10 exponential of the input argument.
Returns
- exp10f( ) returns 1.
- exp10f( ) returns +0.
- exp10f( ) returns .
Description
Calculate , the base 10 exponential of the input argument x.
Note:-
For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C++ Programming Guide, Mathematical Functions Appendix, Intrinsic Functions section for a complete list of functions affected.
- __device__ float exp2f ( float x )
-
Calculate the base 2 exponential of the input argument.
Returns
- exp2f( ) returns 1.
- exp2f( ) returns +0.
- exp2f( ) returns .
Description
Calculate , the base 2 exponential of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float expf ( float x )
-
Calculate the base exponential of the input argument.
Returns
- expf( ) returns 1.
- expf( ) returns +0.
- expf( ) returns .
Description
Calculate , the base exponential of the input argument x.
Note:-
For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C++ Programming Guide, Mathematical Functions Appendix, Intrinsic Functions section for a complete list of functions affected.
- __device__ float expm1f ( float x )
-
Calculate the base exponential of the input argument, minus 1.
Returns
- expm1f( ) returns .
- expm1f( ) returns -1.
- expm1f( ) returns .
Description
Calculate -1, the base exponential of the input argument x, minus 1.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float fabsf ( float x )
-
Calculate the absolute value of its argument.
Returns
Returns the absolute value of its argument.
- fabsf( ) returns .
- fabsf( ) returns +0.
- fabsf(NaN) returns an unspecified NaN.
Description
Calculate the absolute value of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float fdimf ( float x, float y )
-
Compute the positive difference between x and y.
Returns
Returns the positive difference between x and y.
- fdimf(x, y) returns x - y if x > y.
- fdimf(x, y) returns +0 if xy.
Description
Compute the positive difference between x and y. The positive difference is x - y when x > y and +0 otherwise.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float fdividef ( float x, float y )
-
Divide two floating-point values.
Returns
Returns x / y.
Description
Compute x divided by y. If --use_fast_math is specified, use __fdividef() for higher performance, otherwise use normal division.
Note:-
For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C++ Programming Guide, Mathematical Functions Appendix, Intrinsic Functions section for a complete list of functions affected.
-
- __device__ float floorf ( float x )
-
Calculate the largest integer less than or equal to x.
Returns
Returns expressed as a floating-point number.
- floorf( ) returns .
- floorf( ) returns .
Description
Calculate the largest integer value which is less than or equal to x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float fmaf ( float x, float y, float z )
-
Compute as a single operation.
Returns
Returns the rounded value of as a single operation.
- fmaf( , , z) returns NaN.
- fmaf( , , z) returns NaN.
- fmaf(x, y, ) returns NaN if is an exact .
- fmaf(x, y, ) returns NaN if is an exact .
Description
Compute the value of as a single ternary operation. After computing the value to infinite precision, the value is rounded once.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float fmaxf ( float x, float y )
-
Determine the maximum numeric value of the arguments.
Returns
Returns the maximum numeric values of the arguments x and y.
- If both arguments are NaN, returns NaN.
- If one argument is NaN, returns the numeric argument.
Description
Determines the maximum numeric value of the arguments x and y. Treats NaN arguments as missing data. If one argument is a NaN and the other is legitimate numeric value, the numeric value is chosen.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float fminf ( float x, float y )
-
Determine the minimum numeric value of the arguments.
Returns
Returns the minimum numeric value of the arguments x and y.
- If both arguments are NaN, returns NaN.
- If one argument is NaN, returns the numeric argument.
Description
Determines the minimum numeric value of the arguments x and y. Treats NaN arguments as missing data. If one argument is a NaN and the other is legitimate numeric value, the numeric value is chosen.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float fmodf ( float x, float y )
-
Calculate the floating-point remainder of x / y.
Returns
- Returns the floating-point remainder of x / y.
- fmodf( , y) returns if y is not zero.
- fmodf(x, ) returns x if x is finite.
- fmodf(x, y) returns NaN if x is or y is zero.
- If either argument is NaN, NaN is returned.
Description
Calculate the floating-point remainder of x / y. The floating-point remainder of the division operation x / y calculated by this function is exactly the value x - n*y, where n is x / y with its fractional part truncated. The computed value will have the same sign as x, and its magnitude will be less than the magnitude of y.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float frexpf ( float x, int* nptr )
-
Extract mantissa and exponent of a floating-point value.
Returns
Returns the fractional component m.
- frexpf( , nptr) returns and stores zero in the location pointed to by nptr.
- frexpf( , nptr) returns and stores an unspecified value in the location to which nptr points.
- frexpf(NaN, y) returns a NaN and stores an unspecified value in the location to which nptr points.
Description
Decomposes the floating-point value x into a component m for the normalized fraction element and another term n for the exponent. The absolute value of m will be greater than or equal to 0.5 and less than 1.0 or it will be equal to 0; . The integer exponent n will be stored in the location to which nptr points.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float hypotf ( float x, float y )
-
Calculate the square root of the sum of squares of two arguments.
Returns
Returns the length of the hypotenuse .
- hypotf(x,y), hypotf(y,x), and hypotf(x, -y) are equivalent.
- hypotf(x, ) is equivalent to fabsf(x).
- hypotf( ,y) returns , even if y is a NaN.
Description
Calculates the length of the hypotenuse of a right triangle whose two sides have lengths x and y without undue overflow or underflow.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ int ilogbf ( float x )
-
Compute the unbiased integer exponent of the argument.
Returns
- If successful, returns the unbiased exponent of the argument.
- ilogbf( ) returns INT_MIN.
- ilogbf(NaN) returns INT_MIN.
- ilogbf( ) returns INT_MAX.
- Note: above behavior does not take into account FP_ILOGB0 nor FP_ILOGBNAN.
Description
Calculates the unbiased integer exponent of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ __RETURN_TYPE isfinite ( float a )
-
Determine whether argument is finite.
Returns
- With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns true if and only if a is a finite value.
- With other host compilers: __RETURN_TYPE is 'int'. Returns a nonzero value if and only if a is a finite value.
Description
Determine whether the floating-point value a is a finite value (zero, subnormal, or normal and not infinity or NaN).
- __device__ __RETURN_TYPE isinf ( float a )
-
Determine whether argument is infinite.
Returns
- With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns true if and only if a is an infinite value.
- With other host compilers: __RETURN_TYPE is 'int'. Returns a nonzero value if and only if a is an infinite value.
Description
Determine whether the floating-point value a is an infinite value (positive or negative).
- __device__ __RETURN_TYPE isnan ( float a )
-
Determine whether argument is a NaN.
Returns
- With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns true if and only if a is a NaN value.
- With other host compilers: __RETURN_TYPE is 'int'. Returns a nonzero value if and only if a is a NaN value.
Description
Determine whether the floating-point value a is a NaN.
- __device__ float j0f ( float x )
-
Calculate the value of the Bessel function of the first kind of order 0 for the input argument.
Returns
Returns the value of the Bessel function of the first kind of order 0.
- j0f( ) returns +0.
- j0f(NaN) returns NaN.
Description
Calculate the value of the Bessel function of the first kind of order 0 for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float j1f ( float x )
-
Calculate the value of the Bessel function of the first kind of order 1 for the input argument.
Returns
Returns the value of the Bessel function of the first kind of order 1.
- j1f( ) returns .
- j1f( ) returns .
- j1f(NaN) returns NaN.
Description
Calculate the value of the Bessel function of the first kind of order 1 for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float jnf ( int n, float x )
-
Calculate the value of the Bessel function of the first kind of order n for the input argument.
Returns
Returns the value of the Bessel function of the first kind of order n.
- jnf(n, NaN) returns NaN.
- jnf(n, x) returns NaN for n < 0.
- jnf(n, ) returns +0.
Description
Calculate the value of the Bessel function of the first kind of order n for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float ldexpf ( float x, int exp )
-
Calculate the value of .
Returns
- ldexpf(x, exp) is equivalent to scalbnf(x, exp).
Description
Calculate the value of of the input arguments x and exp.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float lgammaf ( float x )
-
Calculate the natural logarithm of the absolute value of the gamma function of the input argument.
Returns
- lgammaf(1) returns +0.
- lgammaf(2) returns +0.
- lgammaf(x) returns if x 0 and x is an integer.
- lgammaf( ) returns .
- lgammaf( ) returns .
Description
Calculate the natural logarithm of the absolute value of the gamma function of the input argument x, namely the value of
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ long long int llrintf ( float x )
-
Round input to nearest integer value.
Returns
Returns rounded integer value.
Description
Round x to the nearest integer value, with halfway cases rounded to the nearest even integer value. If the result is outside the range of the return type, the behavior is undefined.
- __device__ long long int llroundf ( float x )
-
Round to nearest integer value.
Returns
Returns rounded integer value.
Description
Round x to the nearest integer value, with halfway cases rounded away from zero. If the result is outside the range of the return type, the behavior is undefined.
Note:This function may be slower than alternate rounding methods. See llrintf().
- __device__ float log10f ( float x )
-
Calculate the base 10 logarithm of the input argument.
Returns
- log10f( ) returns .
- log10f(1) returns +0.
- log10f(x) returns NaN for x < 0.
- log10f( ) returns .
Description
Calculate the base 10 logarithm of the input argument x.
Note:-
For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C++ Programming Guide, Mathematical Functions Appendix, Intrinsic Functions section for a complete list of functions affected.
- __device__ float log1pf ( float x )
-
Calculate the value of .
Returns
- log1pf( ) returns .
- log1pf(-1) returns .
- log1pf(x) returns NaN for x < -1.
- log1pf( ) returns .
Description
Calculate the value of of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float log2f ( float x )
-
Calculate the base 2 logarithm of the input argument.
Returns
- log2f( ) returns .
- log2f(1) returns +0.
- log2f(x) returns NaN for x < 0.
- log2f( ) returns .
Description
Calculate the base 2 logarithm of the input argument x.
Note:-
For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C++ Programming Guide, Mathematical Functions Appendix, Intrinsic Functions section for a complete list of functions affected.
- __device__ float logbf ( float x )
-
Calculate the floating-point representation of the exponent of the input argument.
Returns
- logbf( ) returns .
- logbf( ) returns .
Description
Calculate the floating-point representation of the exponent of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float logf ( float x )
-
Calculate the natural logarithm of the input argument.
Returns
- logf( ) returns .
- logf(1) returns +0.
- logf(x) returns NaN for x < 0.
- logf( ) returns .
Description
Calculate the natural logarithm of the input argument x.
Note:-
For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C++ Programming Guide, Mathematical Functions Appendix, Intrinsic Functions section for a complete list of functions affected.
- __device__ long int lrintf ( float x )
-
Round input to nearest integer value.
Returns
Returns rounded integer value.
Description
Round x to the nearest integer value, with halfway cases rounded to the nearest even integer value. If the result is outside the range of the return type, the behavior is undefined.
- __device__ long int lroundf ( float x )
-
Round to nearest integer value.
Returns
Returns rounded integer value.
Description
Round x to the nearest integer value, with halfway cases rounded away from zero. If the result is outside the range of the return type, the behavior is undefined.
Note:This function may be slower than alternate rounding methods. See lrintf().
- __device__ float max ( const float a, const float b )
-
Calculate the maximum value of the input float arguments.
Description
Calculate the maximum value of the arguments a and b. Behavior is equivalent to fmaxf() function.
Note, this is different from std:: specification
- __device__ float min ( const float a, const float b )
-
Calculate the minimum value of the input float arguments.
Description
Calculate the minimum value of the arguments a and b. Behavior is equivalent to fminf() function.
Note, this is different from std:: specification
- __device__ float modff ( float x, float* iptr )
-
Break down the input argument into fractional and integral parts.
Returns
- modff( , iptr) returns a result with the same sign as x.
- modff( , iptr) returns and stores in the object pointed to by iptr.
- modff(NaN, iptr) stores a NaN in the object pointed to by iptr and returns a NaN.
Description
Break down the argument x into fractional and integral parts. The integral part is stored in the argument iptr. Fractional and integral parts are given the same sign as the argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float nanf ( const char* tagp )
-
Returns "Not a Number" value.
Returns
- nanf(tagp) returns NaN.
Description
Return a representation of a quiet NaN. Argument tagp selects one of the possible representations.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float nearbyintf ( float x )
-
Round the input argument to the nearest integer.
Returns
- nearbyintf( ) returns .
- nearbyintf( ) returns .
Description
Round argument x to an integer value in single precision floating-point format. Uses round to nearest rounding, with ties rounding to even.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float nextafterf ( float x, float y )
-
Return next representable single-precision floating-point value after argument x in the direction of y.
Returns
- nextafterf(x, y) = y if x equals y.
- nextafterf(x, y) = NaN if either x or y are NaN.
Description
Calculate the next representable single-precision floating-point value following x in the direction of y. For example, if y is greater than x, nextafterf() returns the smallest representable number greater than x
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float norm3df ( float a, float b, float c )
-
Calculate the square root of the sum of squares of three coordinates of the argument.
Returns
Returns the length of the 3D vector .
- In the presence of an exactly infinite coordinate is returned, even if there are NaNs.
Description
Calculates the length of three dimensional vector in Euclidean space without undue overflow or underflow.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float norm4df ( float a, float b, float c, float d )
-
Calculate the square root of the sum of squares of four coordinates of the argument.
Returns
Returns the length of the 4D vector .
- In the presence of an exactly infinite coordinate is returned, even if there are NaNs.
Description
Calculates the length of four dimensional vector in Euclidean space without undue overflow or underflow.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float normcdff ( float x )
-
Calculate the standard normal cumulative distribution function.
Returns
- normcdff( ) returns 1.
- normcdff( ) returns +0
Description
Calculate the cumulative distribution function of the standard normal distribution for input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float normcdfinvf ( float x )
-
Calculate the inverse of the standard normal cumulative distribution function.
Returns
- normcdfinvf( ) returns .
- normcdfinvf(1) returns .
- normcdfinvf(x) returns NaN if x is not in the interval [0,1].
Description
Calculate the inverse of the standard normal cumulative distribution function for input argument x, . The function is defined for input values in the interval .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float normf ( int dim, const float* p )
-
Calculate the square root of the sum of squares of any number of coordinates.
Returns
Returns the length of the dim-D vector .
- In the presence of an exactly infinite coordinate is returned, even if there are NaNs.
Description
Calculates the length of a vector p, dimension of which is passed as an argument without undue overflow or underflow.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float powf ( float x, float y )
-
Calculate the value of first argument to the power of second argument.
Returns
- powf( , y) returns for y an odd integer less than 0.
- powf( , y) returns for y less than 0 and not an odd integer.
- powf( , y) returns for y an odd integer greater than 0.
- powf( , y) returns +0 for y > 0 and not an odd integer.
- powf(-1, ) returns 1.
- powf(+1, y) returns 1 for any y, even a NaN.
- powf(x, ) returns 1 for any x, even a NaN.
- powf(x, y) returns a NaN for finite x < 0 and finite non-integer y.
- powf(x, ) returns for .
- powf(x, ) returns +0 for .
- powf(x, ) returns +0 for .
- powf(x, ) returns for .
- powf( , y) returns -0 for y an odd integer less than 0.
- powf( , y) returns +0 for y < 0 and not an odd integer.
- powf( , y) returns for y an odd integer greater than 0.
- powf( , y) returns for y > 0 and not an odd integer.
- powf( , y) returns +0 for y < 0.
- powf( , y) returns for y > 0.
Description
Calculate the value of x to the power of y.
Note:-
For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C++ Programming Guide, Mathematical Functions Appendix, Intrinsic Functions section for a complete list of functions affected.
- __device__ float rcbrtf ( float x )
-
Calculate reciprocal cube root function.
Returns
- rcbrt( ) returns .
- rcbrt( ) returns .
Description
Calculate reciprocal cube root function of x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float remainderf ( float x, float y )
-
Compute single-precision floating-point remainder.
Returns
- remainderf(x, ) returns NaN.
- remainderf( , y) returns NaN.
- remainderf(x, ) returns x for finite x.
Description
Compute single-precision floating-point remainder r of dividing x by y for nonzero y. Thus . The value n is the integer value nearest . In the case when , the even n value is chosen.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float remquof ( float x, float y, int* quo )
-
Compute single-precision floating-point remainder and part of quotient.
Returns
Returns the remainder.
- remquof(x, , quo) returns NaN and stores an unspecified value in the location to which quo points.
- remquof( , y, quo) returns NaN and stores an unspecified value in the location to which quo points.
- remquof(x, y, quo) returns NaN and stores an unspecified value in the location to which quo points if either of x or y is NaN.
- remquof(x, , quo) returns x and stores zero in the location to which quo points for finite x.
Description
Compute a single-precision floating-point remainder in the same way as the remainderf() function. Argument quo returns part of quotient upon division of x by y. Value quo has the same sign as and may not be the exact quotient but agrees with the exact quotient in the low order 3 bits.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float rhypotf ( float x, float y )
-
Calculate one over the square root of the sum of squares of two arguments.
Returns
Returns one over the length of the hypotenuse .
- rhypotf(x,y), rhypotf(y,x), and rhypotf(x, -y) are equivalent.
- rhypotf( ,y) returns +0, even if y is a NaN.
Description
Calculates one over the length of the hypotenuse of a right triangle whose two sides have lengths x and y without undue overflow or underflow.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float rintf ( float x )
-
Round input to nearest integer value in floating-point.
Returns
Returns rounded integer value.
- rintf( ) returns .
- rintf( ) returns .
Description
Round x to the nearest integer value in floating-point format, with halfway cases rounded to the nearest even integer value.
- __device__ float rnorm3df ( float a, float b, float c )
-
Calculate one over the square root of the sum of squares of three coordinates.
Returns
Returns one over the length of the 3D vector .
- In the presence of an exactly infinite coordinate is returned, even if there are NaNs.
Description
Calculates one over the length of three dimension vector in Euclidean space without undue overflow or underflow.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float rnorm4df ( float a, float b, float c, float d )
-
Calculate one over the square root of the sum of squares of four coordinates.
Returns
Returns one over the length of the 3D vector .
- In the presence of an exactly infinite coordinate is returned, even if there are NaNs.
Description
Calculates one over the length of four dimension vector in Euclidean space without undue overflow or underflow.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float rnormf ( int dim, const float* p )
-
Calculate the reciprocal of square root of the sum of squares of any number of coordinates.
Returns
Returns one over the length of the vector .
- In the presence of an exactly infinite coordinate is returned, even if there are NaNs.
Description
Calculates one over the length of vector p, dimension of which is passed as an argument, in Euclidean space without undue overflow or underflow.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float roundf ( float x )
-
Round to nearest integer value in floating-point.
Returns
Returns rounded integer value.
- roundf( ) returns .
- roundf( ) returns .
Description
Round x to the nearest integer value in floating-point format, with halfway cases rounded away from zero.
Note:This function may be slower than alternate rounding methods. See rintf().
- __device__ float rsqrtf ( float x )
-
Calculate the reciprocal of the square root of the input argument.
Returns
Returns .
- rsqrtf( ) returns +0.
- rsqrtf( ) returns .
- rsqrtf(x) returns NaN if x is less than 0.
Description
Calculate the reciprocal of the nonnegative square root of x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float scalblnf ( float x, long int n )
-
Scale floating-point input by integer power of two.
Returns
Returns x * .
- scalblnf( , n) returns .
- scalblnf(x, 0) returns x.
- scalblnf( , n) returns .
Description
Scale x by by efficient manipulation of the floating-point exponent.
- __device__ float scalbnf ( float x, int n )
-
Scale floating-point input by integer power of two.
Returns
Returns x * .
- scalbnf( , n) returns .
- scalbnf(x, 0) returns x.
- scalbnf( , n) returns .
Description
Scale x by by efficient manipulation of the floating-point exponent.
- __device__ __RETURN_TYPE signbit ( float a )
-
Return the sign bit of the input.
Returns
Reports the sign bit of all values including infinities, zeros, and NaNs.
- With Visual Studio 2013 host compiler: __RETURN_TYPE is 'bool'. Returns true if and only if a is negative.
- With other host compilers: __RETURN_TYPE is 'int'. Returns a nonzero value if and only if a is negative.
Description
Determine whether the floating-point value a is negative.
- __device__ void sincosf ( float x, float* sptr, float* cptr )
-
Calculate the sine and cosine of the first input argument.
Returns
- none
Description
Calculate the sine and cosine of the first input argument x (measured in radians). The results for sine and cosine are written into the second argument, sptr, and, respectively, third argument, cptr.
See also:
Note:-
For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C++ Programming Guide, Mathematical Functions Appendix, Intrinsic Functions section for a complete list of functions affected.
- __device__ void sincospif ( float x, float* sptr, float* cptr )
-
Calculate the sine and cosine of the first input argument .
Returns
- none
Description
Calculate the sine and cosine of the first input argument, x (measured in radians), . The results for sine and cosine are written into the second argument, sptr, and, respectively, third argument, cptr.
See also:
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float sinf ( float x )
-
Calculate the sine of the input argument.
Returns
- sinf( ) returns .
- sinf( ) returns NaN.
Description
Calculate the sine of the input argument x (measured in radians).
Note:-
For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C++ Programming Guide, Mathematical Functions Appendix, Intrinsic Functions section for a complete list of functions affected.
- __device__ float sinhf ( float x )
-
Calculate the hyperbolic sine of the input argument.
Returns
- sinhf( ) returns .
- sinhf( ) returns .
Description
Calculate the hyperbolic sine of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float sinpif ( float x )
-
Calculate the sine of the input argument .
Returns
- sinpif( ) returns .
- sinpif( ) returns NaN.
Description
Calculate the sine of x (measured in radians), where x is the input argument.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float sqrtf ( float x )
-
Calculate the square root of the input argument.
Returns
Returns .
- sqrtf( ) returns .
- sqrtf( ) returns .
- sqrtf(x) returns NaN if x is less than 0.
Description
Calculate the nonnegative square root of x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float tanf ( float x )
-
Calculate the tangent of the input argument.
Returns
- tanf( ) returns .
- tanf( ) returns NaN.
Description
Calculate the tangent of the input argument x (measured in radians).
Note:-
For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
-
This function is affected by the --use_fast_math compiler flag. See the CUDA C++ Programming Guide, Mathematical Functions Appendix, Intrinsic Functions section for a complete list of functions affected.
- __device__ float tanhf ( float x )
-
Calculate the hyperbolic tangent of the input argument.
Returns
- tanhf( ) returns .
- tanhf( ) returns .
Description
Calculate the hyperbolic tangent of the input argument x.
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float tgammaf ( float x )
-
Calculate the gamma function of the input argument.
Returns
- tgammaf( ) returns .
- tgammaf(2) returns +1.
- tgammaf(x) returns NaN if x < 0 and x is an integer.
- tgammaf( ) returns NaN.
- tgammaf( ) returns .
Description
Calculate the gamma function of the input argument x, namely the value of .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float truncf ( float x )
-
Truncate input argument to the integral part.
Returns
Returns truncated integer value.
- truncf( ) returns .
- truncf( ) returns .
Description
Round x to the nearest integer value that does not exceed x in magnitude.
- __device__ float y0f ( float x )
-
Calculate the value of the Bessel function of the second kind of order 0 for the input argument.
Returns
Returns the value of the Bessel function of the second kind of order 0.
- y0f( ) returns .
- y0f(x) returns NaN for x < 0.
- y0f( ) returns +0.
- y0f(NaN) returns NaN.
Description
Calculate the value of the Bessel function of the second kind of order 0 for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float y1f ( float x )
-
Calculate the value of the Bessel function of the second kind of order 1 for the input argument.
Returns
Returns the value of the Bessel function of the second kind of order 1.
- y1f( ) returns .
- y1f(x) returns NaN for x < 0.
- y1f( ) returns +0.
- y1f(NaN) returns NaN.
Description
Calculate the value of the Bessel function of the second kind of order 1 for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.
- __device__ float ynf ( int n, float x )
-
Calculate the value of the Bessel function of the second kind of order n for the input argument.
Returns
Returns the value of the Bessel function of the second kind of order n.
- ynf(n, x) returns NaN for n < 0.
- ynf(n, ) returns .
- ynf(n, x) returns NaN for x < 0.
- ynf(n, ) returns +0.
- ynf(n, NaN) returns NaN.
Description
Calculate the value of the Bessel function of the second kind of order n for the input argument x, .
Note:For accuracy information see the CUDA C++ Programming Guide, Mathematical Functions Appendix, Single-Precision Floating-Point Functions section.