DOCA Documentation v2.5.2 LTS
DOCA 2.5.2

DOCA Compress

This guide provides instructions on how to use the DOCA Compress API.

DOCA Compress library provides an API to compress and decompress data using hardware acceleration, supporting both host and NVIDIA® BlueField® DPU memory regions.

The library provides an API for executing compress operations on DOCA buffers, where these buffers reside in either the DPU memory or host memory.

Using DOCA Compress, compress and decompress memory operations can be easily executed in an optimized, hardware-accelerated manner.

This document is intended for software developers wishing to accelerate their application's compress memory operations.

The DOCA Compress library follows the architecture of a DOCA Core Context. It is recommended to read the following sections before proceeding:

DOCA Compress-based applications can run either on the host machine or on the BlueField DPU target.

Compress can only be run with a DPU configured with DPU mode as described in NVIDIA BlueField DPU Modes of Operation.

DOCA Compress is a DOCA Context as defined by DOCA Core. See NVIDA DOCA Core Context for more information.

DOCA Compress leverages DOCA Core architecture to expose asynchronous tasks that are offloaded to hardware.

dst-buf-src-buf-version-1-modificationdate-1702684743410-api-v2.png

Supported Compress/Decompress Algorithms

For BlueField-2 devices, this library supports:

  • Compress operation using the deflate algorithm

  • Decompress operation using the deflate algorithm

For BlueField-3 devices, this library supports:

  • Decompress operation using the deflate algorithm

  • Decompress operation using the LZ4 algorithm

Alder and CRC

All compress/decompress tasks produce Adler and CRC.

Objects

Device and Device Representor

The library requires a DOCA device to operate, the device is used to access memory and perform the actual copy. See DOCA Core Device Discovery for information.

For same BlueField DPU, it does not matter which device is used (PF/VF/SF), as all these devices utilize the same hardware component. If there are multiple DPUs, it is possible to create a Compress instance per DPU, providing each instance with a device from a different DPU.

To access memory that is not local (from the host to the DPU or vice versa), then the DPU side of the application must pick a device with an appropriate representor. See DOCA Core Device Representor Discovery.

The device must stay valid as long as the Compress instance is not destroyed.

Memory Buffers

All compress/decompress tasks require two DOCA buffers containing the destination and the source. Depending on the allocation pattern of the buffers, refer to the Inventory Types table.

Buffers must not be modified or read during the compress/decompress operation.

Source and Destination Location

DOCA Compress can process DOCA buffers that reside on the host, the DPU, or both.

Local Host

Source and destination buffers reside on the host and the compress library runs on the host.

Local DPU

Source and destination buffers reside on the DPU and the compress library runs on the DPU.

Remote

Source at Host, Destination at DPU

  • The source resides on the host and is exported (DOCA mmap export) to the DPU

  • The destination resides on the DPU

  • The compress library runs on the DPU and compresses/decompresses the host source to the DPU destination

Source at DPU, Destination at Host

  • The source resides on the DPU

  • The destination resides on the host and is exported (DOCA mmap export) to the DPU

  • Compress library runs on the DPU and compresses/decompresses the DPU source to the host destination

To start using the library, the user must go through a configuration phase as described in DOCA Core Context Configuration Phase.

This section describes how to configure and start the context, to allow execution of tasks and retrieval of events.

Configurations

The context can be configured to match the use case of the application.

To find if a configuration is supported or what its min/max value is, refer to Device Support.

Mandatory Configurations

The following configurations must be set by the application before attempting to start the context:

  • At least one task/event type must be configured. See configuration of Tasks.

  • A device with appropriate support must be provided upon creation

Device Support

DOCA Compress requires a device to operate. To pick a device, see DOCA Core Device Discovery.

As device capabilities may change in the future (see DOCA Core Device Support), it is recommended to select your device using the following APIs:

Supported Tasks

  • doca_compress_cap_task_compress_deflate_is_supported

  • doca_compress_cap_task_decompress_deflate_is_supported

  • doca_compress_cap_task_decompress_lz4_is_supported

Supported Buffer Size

  • doca_compress_cap_task_compress_deflate_get_max_buf_size

  • doca_compress_cap_task_decompress_deflate_get_max_buf_size

  • doca_compress_cap_task_decompress_lz4_get_max_buf_size

Buffer Support

Tasks support buffers with the following features:

Buffer Type

Source Buffer

Destination Buffer

Linked List Buffer

Yes

No

Local mmap Buffer

Yes

Yes

mmap From PCI Export Buffer

Yes

Yes

mmap From RDMA Export Buffer

No

No


This section describes execution on CPU or DPU using DOCA Core Progress Engine.

Tasks

Compress Deflate Task

This task facilitates compressing memory using buffers as described in section "Buffer Support".

Configuration

Description

API to set the configuration

API to query support

Enable the task

doca_compress_task_compress_deflate_set_conf

doca_compress_cap_task_compress_deflate_is_supported

Number of tasks

doca_compress_task_compress_deflate_set_conf

doca_compress_get_max_num_tasks (max total num tasks)

Maximal buffer size

doca_compress_cap_task_compress_deflate_get_max_buf_size

Maximum buffer list size

doca_compress_cap_task_compress_deflate_get_max_buf_list_len


Input

Common input as described in DOCA Core Task.

Name

Description

Notes

Source buffer

Buffer pointing to the memory to be compressed

Only the data residing in the data segment is compressed

Destination buffer

Buffer pointing to where compressed memory will be stored

The data is compressed to the tail segment extending the data segment


Output

Common output as described in DOCA Core Task.

Task Successful Completion

After the task completes successfully, the following happens:

  • The source data is compressed to destination

  • The destination buffer data segment is extended to include the compressed data

  • Adler can be retrieved by calling doca_compress_task_compress_deflate_get_adler_cs

  • CRC can be retrieved by calling doca_compress_task_compress_deflate_get_crc_cs

Task Failed Completion

If the task fails midway:

  • The context may enter stopping state if a fatal error occurs

  • The source and destination doca_buf objects are not modified

  • The destination buffer contents may be modified

Limitations

  • The operation is not atomic

  • Once the task has been submitted, the source and destination should not be read/written to

  • Source and destination must not overlap

  • Other limitations are described in DOCA Core Task

Decompress Deflate Task

This task facilitates decompressing memory using buffers as described in section "Buffer Support".

Configuration

Description

API to Set the Configuration

API to Query Support

Enable the task

doca_compress_task_decompress_deflate_set_conf

doca_compress_cap_task_decompress_deflate_is_supported

Number of tasks

doca_compress_task_decompress_deflate_set_conf

doca_compress_get_max_num_tasks (max-total-num-tasks)

Maximal buffer size

doca_compress_cap_task_decompress_deflate_get_max_buf_size

Maximum buffer list size

doca_compress_cap_task_decompress_deflate_get_max_buf_list_len


Input

Common input as described in DOCA Core Task.

Name

Description

Notes

source buffer

Buffer pointing to the memory to be decompressed

Only the data residing in the data segment is decompressed

destination buffer

Buffer pointing to where decompressed memory will be stored

The data is decompressed to the tail segment extending the data segment


Output

Common output as described in DOCA Core Task.

Task Successful Completion

After the task completes successfully, the following happens:

  • The source data is decompressed to destination

  • The destination buffer data segment is extended to include the decompressed data

  • Adler can be retrieved by calling doca_compress_task_decompress_deflate_get_adler_cs

  • CRC can be retrieved by calling doca_compress_task_decompress_deflate_get_crc_cs

Task Failed Completion

If the task fails midway:

  • The context may enter stopping state if a fatal error occurs

  • The source and destination doca_buf objects are not modified

  • The destination buffer contents may be modified

Limitations

  • The operation is not atomic

  • Once the task has been submitted, the source and destination should not be read/written to

  • Source and destination must not overlap

  • Other limitations are described in DOCA Core Task

Decompress LZ4 Task

This task facilitates decompressing memory using buffers as described in section "Buffer Support".

Configuration

Description

API to Set the Configuration

API to Query Support

Enable the task

doca_compress_task_decompress_lz4_set_conf

doca_compress_cap_task_decompress_lz4_is_supported

Number of tasks

doca_compress_task_decompress_lz4_set_conf

doca_compress_get_max_num_tasks (max total num tasks)

Maximal buffer size

doca_compress_cap_task_decompress_lz4_get_max_buf_size

Maximum buffer list size

doca_compress_cap_task_decompress_lz4_get_max_buf_list_len


Input

Common input as described in DOCA Core Task.

Name

Description

Notes

Source buffer

Buffer pointing to the memory to be decompressed

Only the data residing in the data segment will be decompressed

Destination buffer

Buffer pointing to where decompressed memory will be stored

The data is decompressed to the tail segment extending the data segment


Output

Common output as described in DOCA Core Task.

Task Successful Completion

After the task completes successfully:

  • The source data is decompressed to destination

  • The destination buffer data segment is extended to include the decompressed data

  • Adler can be retrieved by calling doca_compress_task_decompress_lz4_get_adler_cs

  • CRC can be retrieved by calling doca_compress_task_decompress_lz4_get_crc_cs

Task Failed Completion

If the task fails midway:

  • The context may enter stopping state if a fatal error occurs

  • The source and destination doca_buf objects are not modified

  • The destination buffer contents may be modified

Limitations

  • The operation is not atomic

  • Once the task has been submitted, the source and destination should not be read/written to

  • Source and destination must not overlap

  • Other limitations are described in DOCA Core Task

Note

When using an LZ4 operation, the source buffer must be from local memory.

Events

DOCA Compress exposes asynchronous events to notify about changes that happen unexpectedly according to DOCA Core architecture.

The only events DOCA Compress expose are common events (doca ctx state changed). See more info in DOCA Core Event.

The DOCA Compress library follows the Context state machine described in DOCA Core Context State Machine.

This section describes how to move states and what is allowed in each state.

States

Idle

In this state, it is expected that application:

  • Destroys the context

  • Starts the context

Allowed operations:

  • Configuring the context according to Configurations

  • Starting the context

It is possible to reach this state as follows:

Previous State

Transition Action

None

Create the context

Running

Call stop after making sure all tasks have been freed

Stopping

Call progress until all tasks are completed and freed


Starting

This state cannot be reached.

Running

In this state, it is expected that application:

  • Allocates and submit tasks

  • Calls progress to complete tasks and/or receive events

Allowed operations:

  • Allocate previously configured task

  • Submit a task

  • Call stop

It is possible to reach this state as follows:

Previous State

Transition Action

Idle

Call start after configuration


Stopping

In this state, it is expected that application:

  • Calls progress to complete all inflight tasks (tasks will complete with failure)

  • Frees any completed tasks

Allowed operations:

  • Call progress

It is possible to reach this state as follows:

Previous State

Transition Action

Running

Call progress and fatal error occurs

Running

Call stop without freeing all tasks

DOCA Compress only supports datapath on CPU, see Execution Phase.

Note

When using an LZ4 operation, the source buffer must be from local memory.

The following samples illustrate how to use the DOCA Compress API to compress and decompress files.

DOCA Compress handles payload only. To create a compressed file, (e.g., gzip), the developer must add a gzip header. To decompress a file, (e.g. gzip) developer has to strip the header.

Running the Sample

  1. Refer to the following documents:

  2. To build a given sample:

    Copy
    Copied!
                

    cd /opt/mellanox/doca/samples/doca_compress/<sample_name> meson /tmp/build ninja -C /tmp/build

    Info

    The binary doca_<sample_name> is created under /tmp/build/.

  3. Sample (e.g., doca_compress_deflate) usage:

    Copy
    Copied!
                

    Usage: doca_compress_deflate [DOCA Flags] [Program Flags]   DOCA Flags: -h, --help Print a help synopsis -v, --version Print program version information -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE> --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE> -j, --json <path> Parse all command flags from an input json file   Program Flags: -p, --pci-addr DOCA device PCI device address -f, --file input file to compress/decompress -o, --output output file -c, --output-checksum Output checksum

  4. For additional information per sample, use the -h option:

    Copy
    Copied!
                

    /tmp/build/doca_<sample_name> -h

Samples

Compress/Decompress Deflate

This sample illustrates how to use DOCA Compress library to compress or decompress a file.

The sample logic includes:

  1. Locating a DOCA device.

  2. Initializing the required DOCA core structures.

  3. Populating DOCA memory map with two relevant buffers; one for the source data and one for the result.

  4. Allocating elements in DOCA buffer inventory for each buffer.

  5. Allocating and initializing DOCA Compress deflate task or DOCA Decompress deflate object.

  6. Submitting a compress task.

  7. Running the progress engine until the task is completed.

  8. Writing the result into an output file, out.txt.

  9. Destroying all compress and DOCA core structures.

References:

  • /opt/mellanox/doca/samples/doca_compress/compress_deflate/compress_deflate_sample.c

  • /opt/mellanox/doca/samples/doca_compress/compress_deflate/compress_deflate_main.c

  • /opt/mellanox/doca/samples/doca_compress/compress_deflate/meson.build

  • /opt/mellanox/doca/samples/doca_compress/decompress_deflate/decompress_deflate_sample.c

  • /opt/mellanox/doca/samples/doca_compress/decompress_deflate/decompress_deflate_main.c

  • /opt/mellanox/doca/samples/doca_compress/decompress_deflate/meson.build

  • /opt/mellanox/doca/samples/doca_compress/compress_common.h

  • /opt/mellanox/doca/samples/doca_compress/compress_common.c

  • /opt/mellanox/doca/samples/doca_compress/meson.build

© Copyright 2024, NVIDIA. Last updated on Jul 10, 2024.