Installation Guide for Dynamo Kubernetes Platform#
Deploy and manage Dynamo inference graphs on Kubernetes with automated orchestration and scaling, using the Dynamo Kubernetes Platform.
Before You Start#
Determine your cluster environment:
Shared/Multi-Tenant Cluster (K8s cluster with existing Dynamo artifacts):
CRDs already installed cluster-wide - skip CRD installation step
Must use namespace-restricted installation (see note in installation steps)
Dedicated Cluster (full cluster admin access):
You install CRDs yourself
Can use cluster-wide operator (default)
Local Development (Minikube, testing):
See Minikube Setup first, then follow installation steps below
To check if CRDs already exist:
kubectl get crd | grep dynamo
# If you see dynamographdeployments, dynamocomponentdeployments, etc., CRDs are already installed
Installation Paths#
Platform is installed using Dynamo Kubernetes Platform helm chart.
Path A: Pre-built Artifacts
Use case: Production deployment, shared or dedicated clusters
Source: NGC published Helm charts
Time: ~10 minutes
Jump to: Path A
Path B: Custom Build from Source
Use case: Contributing to Dynamo, using latest features from main branch, customization
Requirements: Docker build environment
Time: ~30 minutes
Jump to: Path B
All helm install commands could be overridden by either setting the values.yaml file or by passing in your own values.yaml:
helm install ...
-f your-values.yaml
and/or setting values as flags to the helm install command, as follows:
helm install ...
--set "your-value=your-value"
Prerequisites#
Verify before proceeding:
Kubernetes cluster v1.24+ access
kubectl v1.24+ installed and configured
Helm v3.0+ installed
Cluster type determined (shared vs dedicated)
CRD status checked if on shared cluster
NGC credentials if using NVIDIA images (optional for public images)
Estimated time: 5-30 minutes depending on path
# Check required tools
kubectl version --client # v1.24+
helm version # v3.0+
docker version # Running daemon (for Path D only)
# Set your release version
export RELEASE_VERSION=0.x.x # any version of Dynamo 0.3.2+ listed at https://github.com/ai-dynamo/dynamo/releases
No cluster? See Minikube Setup for local development.
Path A: Production Install#
Install from NGC published artifacts.
# 1. Set environment
export NAMESPACE=dynamo-system
export RELEASE_VERSION=0.x.x # any version of Dynamo 0.3.2+ listed at https://github.com/ai-dynamo/dynamo/releases
# 2. Install CRDs (skip if on shared cluster where CRDs already exist)
helm fetch https://helm.ngc.nvidia.com/nvidia/ai-dynamo/charts/dynamo-crds-${RELEASE_VERSION}.tgz
helm install dynamo-crds dynamo-crds-${RELEASE_VERSION}.tgz --namespace default
# 3. Install Platform
helm fetch https://helm.ngc.nvidia.com/nvidia/ai-dynamo/charts/dynamo-platform-${RELEASE_VERSION}.tgz
helm install dynamo-platform dynamo-platform-${RELEASE_VERSION}.tgz --namespace ${NAMESPACE} --create-namespace
For Shared/Multi-Tenant Clusters:
If your cluster has namespace-restricted Dynamo operators, you MUST add namespace restriction to your installation:
# Add this flag to the helm install command above
--set dynamo-operator.namespaceRestriction.enabled=true
Note: Use the full path dynamo-operator.namespaceRestriction.enabled=true (not just namespaceRestriction.enabled=true).
If you see this validation error, you need namespace restriction:
VALIDATION ERROR: Cannot install cluster-wide Dynamo operator.
Found existing namespace-restricted Dynamo operators in namespaces: ...
Tip
For multinode deployments, you need to enable Grove and KAI Scheduler. You might chose to install them manually or through the dynamo-platform helm install command. When using the dynamo-platform helm install command, Grove and KAI Scheduler are NOT installed by default. You can enable their installation by setting the following flags in the helm install command:
--set "grove.enabled=true"
--set "kai-scheduler.enabled=true"
Tip
By default, Model Express Server is not used. If you wish to use an existing Model Express Server, you can set the modelExpressURL to the existing server’s URL in the helm install command:
--set "dynamo-operator.modelExpressURL=http://model-express-server.model-express.svc.cluster.local:8080"
Tip
By default, Dynamo Operator is installed cluster-wide and will monitor all namespaces. If you wish to restrict the operator to monitor only a specific namespace (the helm release namespace by default), you can set the namespaceRestriction.enabled to true. You can also change the restricted namespace by setting the targetNamespace property.
--set "dynamo-operator.namespaceRestriction.enabled=true"
--set "dynamo-operator.namespaceRestriction.targetNamespace=dynamo-namespace" # optional
Path B: Custom Build from Source#
Build and deploy from source for customization, contributing to Dynamo, or using the latest features from the main branch.
Note: This gives you access to the latest unreleased features and fixes on the main branch.
# 1. Set environment
export NAMESPACE=dynamo-system
export DOCKER_SERVER=nvcr.io/nvidia/ai-dynamo/ # or your registry
export DOCKER_USERNAME='$oauthtoken'
export DOCKER_PASSWORD=<YOUR_NGC_CLI_API_KEY>
export IMAGE_TAG=${RELEASE_VERSION}
# 2. Build operator
cd deploy/cloud/operator
# 2.1 Alternative 1 : Build and push the operator image for multiple platforms
docker buildx create --name multiplatform --driver docker-container --bootstrap
docker buildx use multiplatform
docker buildx build --platform linux/amd64,linux/arm64 -t $DOCKER_SERVER/dynamo-operator:$IMAGE_TAG --push .
# 2.2 Alternative 2 : Build and push the operator image for a single platform
docker build -t $DOCKER_SERVER/dynamo-operator:$IMAGE_TAG . && docker push $DOCKER_SERVER/dynamo-operator:$IMAGE_TAG
cd -
# 3. Create namespace and secrets to be able to pull the operator image (only needed if you pushed the operator image to a private registry)
kubectl create namespace ${NAMESPACE}
kubectl create secret docker-registry docker-imagepullsecret \
--docker-server=${DOCKER_SERVER} \
--docker-username=${DOCKER_USERNAME} \
--docker-password=${DOCKER_PASSWORD} \
--namespace=${NAMESPACE}
cd deploy/cloud/helm
# 4. Install CRDs
helm upgrade --install dynamo-crds ./crds/ --namespace default
# 5. Install Platform
helm dep build ./platform/
# To install cluster-wide instead, set NS_RESTRICT_FLAGS="" (empty) or omit that line entirely.
NS_RESTRICT_FLAGS="--set dynamo-operator.namespaceRestriction.enabled=true"
helm install dynamo-platform ./platform/ \
--namespace "${NAMESPACE}" \
--set "dynamo-operator.controllerManager.manager.image.repository=${DOCKER_SERVER}/dynamo-operator" \
--set "dynamo-operator.controllerManager.manager.image.tag=${IMAGE_TAG}" \
--set "dynamo-operator.imagePullSecrets[0].name=docker-imagepullsecret" \
${NS_RESTRICT_FLAGS}
Verify Installation#
# Check CRDs
kubectl get crd | grep dynamo
# Check operator and platform pods
kubectl get pods -n ${NAMESPACE}
# Expected: dynamo-operator-* and etcd-* and nats-* pods Running
Next Steps#
Deploy Model/Workflow
# Example: Deploy a vLLM workflow with Qwen3-0.6B using aggregated serving kubectl apply -f components/backends/vllm/deploy/agg.yaml -n ${NAMESPACE} # Port forward and test kubectl port-forward svc/agg-vllm-frontend 8000:8000 -n ${NAMESPACE} curl http://localhost:8000/v1/models
Explore Backend Guides
vLLM Deployments
SGLang Deployments
TensorRT-LLM Deployments
Optional:
SLA Planner Quickstart Guide (for SLA-aware scheduling and autoscaling)
Troubleshooting#
“VALIDATION ERROR: Cannot install cluster-wide Dynamo operator”
VALIDATION ERROR: Cannot install cluster-wide Dynamo operator.
Found existing namespace-restricted Dynamo operators in namespaces: ...
Cause: Attempting cluster-wide install on a shared cluster with existing namespace-restricted operators.
Solution: Add namespace restriction to your installation:
--set dynamo-operator.namespaceRestriction.enabled=true
Note: Use the full path dynamo-operator.namespaceRestriction.enabled=true (not just namespaceRestriction.enabled=true).
CRDs already exist
Cause: Installing CRDs on a cluster where they’re already present (common on shared clusters).
Solution: Skip step 2 (CRD installation), proceed directly to platform installation.
To check if CRDs exist:
kubectl get crd | grep dynamo
Pods not starting?
kubectl describe pod <pod-name> -n ${NAMESPACE}
kubectl logs <pod-name> -n ${NAMESPACE}
HuggingFace model access?
kubectl create secret generic hf-token-secret \
--from-literal=HF_TOKEN=${HF_TOKEN} \
-n ${NAMESPACE}
Bitnami etcd “unrecognized” image?
ERROR: Original containers have been substituted for unrecognized ones. Deploying this chart with non-standard containers is likely to cause degraded security and performance, broken chart features, and missing environment variables.
This error that you might encounter during helm install is due to bitnami changing their docker repository to a secure one.
just add the following to the helm install command:
--set "etcd.image.repository=bitnamilegacy/etcd" --set "etcd.global.security.allowInsecureImages=true"
Clean uninstall?
./uninstall.sh # Removes all CRDs and platform
Advanced Options#
Helm Chart Configuration