Deploying Inference Graphs to Kubernetes#

High-level guide to Dynamo Kubernetes deployments. Start here, then dive into specific guides.

1. Install Platform First#

# 1. Set environment
export NAMESPACE=dynamo-kubernetes
export RELEASE_VERSION=0.x.x # any version of Dynamo 0.3.2+ listed at https://github.com/ai-dynamo/dynamo/releases

# 2. Install CRDs
helm fetch https://helm.ngc.nvidia.com/nvidia/ai-dynamo/charts/dynamo-crds-${RELEASE_VERSION}.tgz
helm install dynamo-crds dynamo-crds-${RELEASE_VERSION}.tgz --namespace default

# 3. Install Platform
kubectl create namespace ${NAMESPACE}
helm fetch https://helm.ngc.nvidia.com/nvidia/ai-dynamo/charts/dynamo-platform-${RELEASE_VERSION}.tgz
helm install dynamo-platform dynamo-platform-${RELEASE_VERSION}.tgz --namespace ${NAMESPACE}

For more details or customization options, see Installation Guide for Dynamo Kubernetes Platform.

2. Choose Your Backend#

Each backend has deployment examples and configuration options:

Backend

Available Configurations

vLLM

Aggregated, Aggregated + Router, Disaggregated, Disaggregated + Router, Disaggregated + Planner

SGLang

Aggregated, Aggregated + Router, Disaggregated, Disaggregated + Planner, Disaggregated Multi-node

TensorRT-LLM

Aggregated, Aggregated + Router, Disaggregated, Disaggregated + Router

3. Deploy Your First Model#

# Set same namespace from platform install
export NAMESPACE=dynamo-cloud

# Deploy any example (this uses vLLM with Qwen model using aggregated serving)
kubectl apply -f components/backends/vllm/deploy/agg.yaml -n ${NAMESPACE}

# Check status
kubectl get dynamoGraphDeployment -n ${NAMESPACE}

# Test it
kubectl port-forward svc/agg-vllm-frontend 8000:8000 -n ${NAMESPACE}
curl http://localhost:8000/v1/models

What’s a DynamoGraphDeployment?#

It’s a Kubernetes Custom Resource that defines your inference pipeline:

  • Model configuration

  • Resource allocation (GPUs, memory)

  • Scaling policies

  • Frontend/backend connections

The scripts in the components/<backend>/launch folder like agg.sh demonstrate how you can serve your models locally. The corresponding YAML files like agg.yaml show you how you could create a kubernetes deployment for your inference graph.

📖 API Reference & Documentation#

For detailed technical specifications of Dynamo’s Kubernetes resources:

  • API Reference - Complete CRD field specifications for DynamoGraphDeployment and DynamoComponentDeployment

  • Operator Guide - Dynamo operator configuration and management

  • Create Deployment - Step-by-step deployment creation examples

Choosing Your Architecture Pattern#

When creating a deployment, select the architecture pattern that best fits your use case:

  • Development / Testing - Use agg.yaml as the base configuration

  • Production with Load Balancing - Use agg_router.yaml to enable scalable, load-balanced inference

  • High Performance / Disaggregated - Use disagg_router.yaml for maximum throughput and modular scalability

Frontend and Worker Components#

You can run the Frontend on one machine (e.g., a CPU node) and workers on different machines (GPU nodes). The Frontend serves as a framework-agnostic HTTP entry point that:

  • Provides OpenAI-compatible /v1/chat/completions endpoint

  • Auto-discovers backend workers via etcd

  • Routes requests and handles load balancing

  • Validates and preprocesses requests

Customizing Your Deployment#

Example structure:

apiVersion: nvidia.com/v1alpha1
kind: DynamoGraphDeployment
metadata:
  name: my-llm
spec:
  services:
    Frontend:
      dynamoNamespace: my-llm
      componentType: frontend
      replicas: 1
      extraPodSpec:
        mainContainer:
          image: your-image
    VllmDecodeWorker:  # or SGLangDecodeWorker, TrtllmDecodeWorker
      dynamoNamespace: dynamo-dev
      componentType: worker
      replicas: 1
      envFromSecret: hf-token-secret  # for HuggingFace models
      resources:
        limits:
          gpu: "1"
      extraPodSpec:
        mainContainer:
          image: your-image
          command: ["/bin/sh", "-c"]
          args:
            - python3 -m dynamo.vllm --model YOUR_MODEL [--your-flags]

Worker command examples per backend:

# vLLM worker
args:
  - python3 -m dynamo.vllm --model Qwen/Qwen3-0.6B

# SGLang worker
args:
  - >-
    python3 -m dynamo.sglang
    --model-path deepseek-ai/DeepSeek-R1-Distill-Llama-8B
    --tp 1
    --trust-remote-code

# TensorRT-LLM worker
args:
  - python3 -m dynamo.trtllm
    --model-path deepseek-ai/DeepSeek-R1-Distill-Llama-8B
    --served-model-name deepseek-ai/DeepSeek-R1-Distill-Llama-8B
    --extra-engine-args engine_configs/agg.yaml

Key customization points include:

  • Model Configuration: Specify model in the args command

  • Resource Allocation: Configure GPU requirements under resources.limits

  • Scaling: Set replicas for number of worker instances

  • Routing Mode: Enable KV-cache routing by setting DYN_ROUTER_MODE=kv in Frontend envs

  • Worker Specialization: Add --is-prefill-worker flag for disaggregated prefill workers

Additional Resources#