1. What's New

Welcome to the 22.3 version of the NVIDIA HPC SDK, a comprehensive suite of compilers and libraries enabling developers to program the entire HPC platform, from the GPU foundation to the CPU and out through the interconnect.

The 22.3 release of the HPC SDK is primarily a maintenance and bugfix release containing important functionality and performance improvements.

2. Release Component Versions

The NVIDIA HPC SDK 22.3 release contains the following versions of each component:

Table 1. HPC SDK Release Components
  Linux_x86_64 Linux_ppc64le Linux_aarch64
  CUDA 10.2 CUDA 11.0 CUDA 11.6 CUDA 10.2 CUDA 11.0 CUDA 11.6 CUDA 10.2 CUDA 11.0 CUDA 11.6
nvc++ 22.3 22.3 22.3
nvc 22.3 22.3 22.3
nvfortran 22.3 22.3 22.3
nvcc 10.2.89 11.0.221 11.6.55 10.2.89 11.0.228 11.6.55 N/A 11.0.228 11.6.55
NCCL 2.12.9 2.12.9 2.12.9 2.12.9 2.12.9 2.12.9 N/A 2.12.9 2.12.9
NVSHMEM 2.4.1 2.4.1 2.4.1 2.4.1 2.4.1 2.4.1 N/A N/A N/A
cuBLAS 10.2.2.89 11.2.0.252 11.8.1.74 10.2.2.89 11.2.0.252 11.8.1.74 N/A 11.2.0.252 11.8.1.74
cuFFT 10.1.2.89 10.2.1.245 10.7.1.112 10.1.2.89 10.2.1.245 10.7.1.112 N/A 10.2.1.245 10.7.1.112
cuFFTMp N/A N/A 0.0.2 N/A N/A 0.0.2 N/A N/A N/A
cuRAND 10.1.2.89 10.2.1.245 10.2.9.55 10.1.2.89 10.2.1.245 10.2.9.55 N/A 10.2.1.245 10.2.9.55
cuSOLVER 10.3.0.89 10.6.0.245 11.3.3.112 10.3.0.89 10.6.0.245 11.3.3.112 N/A 10.6.0.245 11.3.3.112
cuSOLVERMp N/A N/A 0.1.0 N/A N/A N/A N/A N/A N/A
cuSPARSE 10.3.1.89 11.1.1.245 11.7.2.112 10.3.1.89 11.1.1.245 11.7.2.112 N/A 11.1.1.245 11.7.2.112
cuTENSOR 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 N/A 1.5.0 1.5.0
Nsight Compute 2022.1.0 2022.1.0 2022.1.0
Nsight Systems 2022.1.1.61 2022.1.1.61 2022.1.1.61
OpenMPI 3.1.5 3.1.5 3.1.5
HPC-X N/A 2.10 2.10 N/A N/A N/A N/A 2.10 2.10
UCX N/A 1.12.0 1.12.0 N/A N/A N/A N/A 1.12.0 1.12.0
OpenBLAS 0.3.13 0.3.13 0.3.13
Scalapack 2.1.0 2.1.0 2.1.0
Thrust 1.9.7 1.9.9 1.15.0 1.9.7 1.9.9 1.15.0 1.9.7 1.9.10 1.15.0
CUB N/A 1.9.9 1.15.0 N/A 1.9.9 1.15.0 N/A 1.9.9 1.15.0
libcu++ N/A 1.0.0 1.7.0 N/A 1.0.0 1.7.0 N/A 1.0.0 1.7.0

3. Supported Platforms

3.1. Platform Requirements for the HPC SDK

Table 2. HPC SDK Platform Requirements
Architecture Linux Distributions Minimum gcc/glibc Toolchain Minimum CUDA Driver
x86_64

CentOS 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8
CentOS 7.9, 8.0, 8.1, 8.2
Fedora 29, 30, 31, 32, 33, 34
OpenSUSE Leap 15.0, 15.1, 15.2
RHEL 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9
RHEL 8.0, 8.1, 8.4, 8.5
SLES 12SP4, 12SP5, 15, 15SP1, 15SP2
Ubuntu 18.04, 20.04
              

C99: 4.8
C11: 4.9
C++03: 4.8
C++11: 4.9
C++14: 5.1
C++17: 7.1
C++20: 10.1
              

440.33
ppc64le

RHEL 7.3, 7.4, 7.5, 7.6, 7.7, 8.0, 8.1, 8.3, 8.4
RHEL Pegas 7.5, 7.6
Ubuntu 18.04
              

C99: 4.8
C11: 4.9
C++03: 4.8
C++11: 4.9
C++14: 5.1
C++17: 7.1
C++20: 10.1
              

440.33
aarch64

CentOS 8.0, 8.1, 8.2, 8.3, 8.4
RHEL 8.1, 8.2
Ubuntu 18.04, 20.04
SLES 15SP3
              

C99: 4.8
C11: 4.9
C++03: 4.8
C++11: 4.9
C++14: 5.1
C++17: 7.1
C++20: 10.1
              

450.36

Programs generated by the HPC Compilers for x86_64 processors require a minimum of AVX instructions, which includes Sandy Bridge and newer CPUs from Intel, as well as Bulldozer and newer CPUs from AMD. POWER 8 and POWER 9 CPUs from the POWER architecture are supported. For the Arm architecture, the minimum required version is Arm v8.1.

3.2. Supported CUDA Toolchain Versions

The NVIDIA HPC SDK uses elements of the CUDA toolchain when building programs for execution with NVIDIA GPUs. Every HPC SDK installation package puts the required CUDA components into an installation directory called [install-prefix]/[arch]/[nvhpc-version]/cuda.

An NVIDIA CUDA GPU device driver must be installed on a system with a GPU before you can run a program compiled for the GPU on that system. The NVIDIA HPC SDK does not contain CUDA Drivers. You must download and install the appropriate CUDA Driver from NVIDIA , including the CUDA Compatibility Platform if that is required.

The nvaccelinfo tool prints the CUDA Driver version in its output. You can use it to find out which version of the CUDA Driver is installed on your system.

The NVIDIA HPC SDK 22.3 includes the following CUDA toolchain versions:
  • CUDA 10.2
  • CUDA 11.0
  • CUDA 11.6
The minimum required CUDA driver versions are listed in the table in Section 3.1.

4.  Known Limitations

  • Some users may experience a bug when using OpenBLAS that causes segmentation faults at job startup; increasing the user's data segment limit (ulimit -d) will work around this issue. This issue has recently been addressed upstream, and the fix will be included when OpenBLAS is updated in a future release of the HPC SDK.
  • Debug information for Fortran arrays with non-constant bounds is not handled correctly, and querying values will yield incorrect results. Stepping through CUDA Fortran and OpenACC kernels is partially supported, but incorrect line numbers are displayed. For additional general limitations with cuda-gdb, please refer to its documentation.
  • When using -⁠stdpar to accelerate C++ parallel algorithms, the algorithm calls cannot include virtual function calls or function calls through a function pointer, cannot use C++ exceptions, can only dereference pointers that point to the heap, and must use random access iterators (raw pointers as iterators work best).
  • When nvc++ -stdpar=multicore is used to generate parallel code, OpenMP pragmas in the same translation unit will also be enabled.

5.  Deprecations and Changes

  • Starting with the 21.11 version of the NVIDIA HPC SDK, the HPC-X package is no longer shipped as part of the packages made available for the POWER architecture.
  • The current default of -gpu=implicitsections will change in a future release to -gpu=noimplicitsections to adhere to the OpenACC specification.
  • Starting with the 21.5 version of the NVIDIA HPC SDK, the -cuda option for NVC++ and NVFORTRAN no longer automatically links the NVIDIA GPU math libraries. Please refer to the -cudalib option.
  • HPC Compiler support for the Kepler architecture of NVIDIA GPUs was deprecated starting with the 21.3 version of the NVIDIA HPC SDK.
  • Support for the KNL architecture of multicore CPUs in the NVIDIA HPC SDK was deprecated in the HPC SDK version 21.3.

Notices

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication of otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA Corporation products are not authorized as critical components in life support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, CUDA-X, GPUDirect, HPC SDK, NGC, NVIDIA Volta, NVIDIA DGX, NVIDIA Nsight, NVLink, NVSwitch, and Tesla are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.


NVIDIA websites use cookies to deliver and improve the website experience. See our cookie policy for further details on how we use cookies and how to change your cookie settings.

X