core.datasets.blended_megatron_dataset_builder#
Module Contents#
Classes#
Builder class for the BlendedDataset and MegatronDataset classes |
Functions#
Determine the contribution of the MegatronDataset splits to the BlendedDataset splits |
Data#
API#
- core.datasets.blended_megatron_dataset_builder.logger#
‘getLogger(…)’
- core.datasets.blended_megatron_dataset_builder.MidLevelDataset#
None
- core.datasets.blended_megatron_dataset_builder.TopLevelDataset#
None
- core.datasets.blended_megatron_dataset_builder.DistributedDataset#
None
- class core.datasets.blended_megatron_dataset_builder.BlendedMegatronDatasetBuilder(
- cls: Type[core.datasets.blended_megatron_dataset_builder.MidLevelDataset],
- sizes: List[int],
- is_built_on_rank: Callable,
- config: megatron.core.datasets.blended_megatron_dataset_config.BlendedMegatronDatasetConfig,
Bases:
objectBuilder class for the BlendedDataset and MegatronDataset classes
- Parameters:
cls (Type[MegatronDataset]) – The class to instantiate, must inherit from MegatronDataset
sizes (List[Optional[int]]) – The minimum total number of samples to draw, or None, per split
is_built_on_rank (Callable) – A callable which returns True if the dataset should be built on the current rank and False otherwise. It should be Megatron Core parallelism aware i.e. global rank, local group rank, and virtual rank may inform its return value. Should return true for exactly one process on global rank 0.
config (BlendedMegatronDatasetConfig) – The config object which informs dataset creation
Initialization
- build() List[Optional[core.datasets.blended_megatron_dataset_builder.TopLevelDataset]]#
Build all dataset splits according to the provided blend(s)
This method is distributed-aware and must be called on all ranks.
The dataset splits returned can vary according to the config. Supply config.blend and config.split to build BlendedDataset and/or MegatronDataset splits from the same distribution. Supply config.blend_per_split to build BlendedDataset and/or MegatronDataset splits from separate distributions. In either case, for each split, handle the following cases:
(1) The split is None - do nothing
(2) The split has one contributing dataset, and…
(a) 'size' is not None - Build a mid-level dataset with low-level dataset sampling in proportion to the size (b) 'size' is None - Build mid-level datasets with no excess low-level dataset sampling(3) The split has multiple contributing datasets, and…
(a) 'weights' is not None and 'size' is not None - Build mid-level datasets with low-level dataset sampling in proportion to their weights and the size - Build a top-level dataset of length marginally greater than 'size' with mid-level dataset sampling in proportion to their weights and the size (b) 'weights' is not None and 'size' is None - Error (c) 'weights' is None and 'size' is not None - Build mid-level datasets with no excess low-level dataset sampling - Build a top-level dataset of length 'size' (capped at the sum of the mid-level dataset lengths) with mid-level dataset sampling in proportion to their lengths and the size (d) 'weights' is None and 'size' is None - Build mid-level datasets with no excess low-level dataset sampling - Build a top-level dataset with no excess mid-level dataset sampling- Returns:
A list containing a dataset instance (or None) per split
- Return type:
List[Optional[TopLevelDataset]]
- _build_blended_dataset_splits() List[Optional[core.datasets.blended_megatron_dataset_builder.TopLevelDataset]]#
Build all dataset splits according to the provided blend(s)
See the BlendedMegatronDatasetBuilder.build alias for more information.
- Returns:
A list containing a dataset instance (or None) per split
- Return type:
List[Optional[TopLevelDataset]]
- _build_megatron_datasets_parallel(
- prefixes: List[str],
- split: List[float],
- sizes_per_dataset: List[List[int]],
Build the megatron datasets for a list of prefixes in parallel
- Parameters:
prefixes (List[str]) – The list of prefix strings
split (List[float]) – The dataset split ratios (must sum to 1.00)
sizes_per_dataset (List[List[int]]) – The number of samples to request
spilt (per MegatronDataset per)
- Returns:
For each split, have a list of MegatronDataset per prefix
- Return type:
List[List[Optional[MegatronDataset]]]
- _build_megatron_dataset_splits(
- dataset_path: Optional[str],
- split: List[float],
- sizes: List[int],
- synchronize_ranks: bool = True,
Build each MidLevelDataset split from a single LowLevelDataset
- Parameters:
dataset_path (Optional[str]) – The path on disk which defines the underlying LowLevelDataset, or None for mock dataset classes
split (List[Tuple[float, float]]) – The dataset split matrix
sizes (List[int]) – The number of total samples to draw from each split
synchronize_ranks (bool) – Whether to call barrier for rank-0 / barrier / other-ranks behavior. Set to False when we enforce this behavior at higher level.
- Returns:
The MidLevelDataset (or None) per split
- Return type:
List[Optional[MidLevelDataset]]
- static build_generic_dataset(
- cls: Union[Type[core.datasets.blended_megatron_dataset_builder.DistributedDataset], Callable],
- is_built_on_rank: Callable,
- synchronize_ranks: bool,
- *args: Any,
Build the DistributedDataset
Return None if and only if the underlying dataset class is not built on the current rank and torch.distributed is initialized.
- Parameters:
cls (Union[Type[DistributedDataset], Callable]) – The DistributedDataset class to be built. In special cases, e.g. when we are building the low level dataset for a RawMegatronDataset instance, we can accept a Callable which returns an Iterable.
is_built_on_rank (Callable) – A callable which returns True if the dataset should be built on the current rank and False otherwise.
synchronize_ranks (bool) – Whether to call barrier for rank-0 / barrier / other-ranks behavior. Set to False when we enforce this behavior at higher level.
args (Tuple[Any]) – The positional arguments used to build the provided DistributedDataset class
- Raises:
Exception – When the dataset constructor raises an OSError
- Returns:
The DistributedDataset instantion, the Iterable instantiation, or None
- Return type:
Optional[Union[DistributedDataset, Iterable]]
- core.datasets.blended_megatron_dataset_builder._get_size_per_split_per_dataset(
- normalized_weights: List[float],
- target_size_per_split: List[int],
- surplus: float = 0.0,
Determine the contribution of the MegatronDataset splits to the BlendedDataset splits
- Parameters:
normalized_weights (List[float]) – e.g. [0.3, 0.7]
target_size_per_split (List[int]) – The number of samples to target for each BlendedDataset split
surplus (float) – The sample surplus to build per split per dataset
- Returns:
The number of samples to request per MegatronDataset per split
- Return type:
List[List[int]]