core.datasets.multimodal_dataset#
Module Contents#
Classes#
Configuration object for Megatron Core Multimodal datasets. |
|
Mock multimodal dataset. |
API#
- class core.datasets.multimodal_dataset.MultimodalDatasetConfig#
Bases:
megatron.core.datasets.gpt_dataset.GPTDatasetConfigConfiguration object for Megatron Core Multimodal datasets.
Note: This is unused at the moment and may be missing features. Follow-up changes will use this.
- image_h: int#
None
Image height.
- image_w: int#
None
Image width.
- preprocess_func: Callable[[Dict[str, torch.Tensor]], Dict[str, torch.Tensor]]#
None
Optional function to preprocess data samples for a specific model.
- __post_init__() None#
- class core.datasets.multimodal_dataset.MockMultimodalDataset(
- dataset: megatron.core.datasets.gpt_dataset.MockGPTLowLevelDataset,
- dataset_path: Optional[str],
- indices: numpy.ndarray,
- num_samples: int,
- index_split: megatron.core.datasets.utils.Split,
- config: megatron.core.datasets.gpt_dataset.GPTDatasetConfig,
Bases:
megatron.core.datasets.gpt_dataset.MockGPTDatasetMock multimodal dataset.
This is unused at the moment and may be missing features. Follow-up changes will use this.
Initialization
- __getitem__(idx: int) Dict[str, torch.Tensor]#
Return a sample that contains a dummy image, text sequence and the associated labels and cost and attention masks.
- Parameters:
idx (int) – The integer seed for mock data generation.
- Returns:
The mock data.
- Return type:
Dict[str, torch.Tensor]