Gst-nvdspostprocess (Alpha)¶
The Gst-nvdspostprocess plugin is a customizable plugin which provides a custom library interface for post processing on Tensor output of inference plugins (nvinfer/nvinferserver). Currently the plugin supports detection, classification and segmentation models for parsing. The plugin connects to post processing lib provided as plugin parameter. The parsing parameters can be specified via a config file. Refer to section Gst-nvdspostprocess File Configuration Specifications below for more details.
For the plugin to perform parsing of inference tensor output, it is necessary to attach tensor output by setting output-tensor-meta
as 1
in inference configuration file and disabling
parsing in the inference plugin by setting network-type
as 100
i.e. network type other. Similarly, in Gst-nvinferserver we can enable the following configs in the configuration file.
output_control { output_tensor_meta : true }
and to disable native post processing, update: infer_config { postprocess { other {} } }
.
Default plugin implementation provides following functionalities.
It parses the tensor meta attached to frame meta or object meta.
Attaches the output of tensor parsing either to frame meta or object meta.
The default custom library (postprocesslib_impl) provided with the plugin implements these functionalities. It can be configured to parse detection, classification and segmentation networks. For multiple inference plugins in pipeline require multiple post process plugin instances corresponding to them.
Inputs and Outputs¶
Inputs
Input Video Gst Buffers
Metadata (NvDsBatchMeta)
Tensor Meta (NvDsInferTensorMeta)
Control parameters
postprocesslib-config-file
postprocesslib-name
gpu-id
Output
Output Video Gst Buffers
Original Metadata (NvDsBatchMeta) (with addition of Object Meta/Classifier Meta/Segmentation Meta)
Features¶
The following table summarizes the features of the plugin.
¶ Feature
Description
Release
Detection output parsing
Parses detector tensor data and attaches the results as object metadata
DS 6.1
Classification output parsing
Parses Classification tensor data and attaches the result as classifier attributes in metadata
DS 6.1
Segmentation output parsing
Parses Segmentation tensor data and attaches the result in metadata
DS 6.1
Instance segmentation with MaskRCNN
Support for instance segmentation using MaskRCNN. It includes output parser and attach mask in object metadata.
DS 6.1
Yolo detector (YoloV3/V3-tiny/V2/V2-tiny) parsing
Support for parsing of Yolo detector output
DS 6.1
FasterRCNN output parsing
—
DS 6.1
Single Shot Detector (SSD) output parsing
—
DS 6.1
Gst-nvdspostprocess File Configuration Specifications¶
The Gst-nvdspreprocess configuration file uses a “YAML” format
Refer to examples like config_detector.yml, config_classifier_car_color.yml, config_segmentation_semantic.yml
located at /opt/nvidia/deepstream/deepstream/sources/gst-plugins/gst-nvdspostprocess/
.
The property
group configures the general behavior of the plugin.
The class-attrs-all
group configures parameters for all classes for detector post processor.
The class-attrs-<id>
group configures parameters <id>
specific class for detector post processor.
The following two tables describes the keys supported for property
groups and class-attrs-<id>
groups respectively.
¶ Property
Meaning
Type and Range
Example
gpu-id
GPU to be used for processing
Integer
gpu-id: 0
process-mode
Mode of operation Full Frame (Primary 1) or on Object (Secondary 2)
Integer 1=Primary(On Full Frame) ,2=Secondary (On Object)
process-mode: 1
gie-unique-id
Perform tensor meta parsing on output of gie-unique-id
Integer >0
gie-unique-id: 1
num-detected-classes
Number of classes detected by Detector network
Integer >0
num-detected-classes: 4
cluster-mode
Clustering mode to be used on detector output
Integer 1=DBSCAN 2=NMS 3=DBSCAN+NMS Hybrid 4=None(No Clustering)
cluster-mode: 2
output-blob-names
Array of output layer names which are to be parsed
String delimited by semicolon
output-blob-names: conv2d_bbox;conv2d_cov/Sigmoid
network-type
Type of network to be parsed
Integer 0=Detector 1=Classifier 2=Segmentation
network-type: 1
labelfile-path
Pathname of a text file containing the labels for the model
String
labelfile-path: /opt/nvidia/deepstream/deepstream-6.1/samples/models/Primary_Detector/labels.txt
classifier-threshold
Minimum threshold label probability. The GIE outputs the label having the highest probability if it is greater than this threshold
Float, >0.0
classifier-threshold: 0.4
operate-on-gie-id
Unique ID of the GIE on whose metadata (bounding boxes) this GIE is to operate on, applicable for process-mode=2
Integer >0
operate-on-gie-id: 1
segmentation-threshold
Confidence threshold for the segmentation model to output a valid class for a pixel. If confidence is less than this threshold, class output for that pixel is ?1.
Float, >0.0
segmentation-threshold: 0.5
segmentation-output-order
Segmentation network output layer order
Integer 0: NCHW 1: NHWC
segmentation-output-order: 0
parse-classifier-func-name
Name of the custom classifier output parsing function. If not specified, post process lib uses the parsing function for softmax layers.
String
parse-classifier-func-name: NvDsPostProcessClassiferParseCustomSoftmax
parse-bbox-func-name
Name of the custom bounding box parsing function. If not specified, post process lib uses the function for the resnet model provided by the SDK
String
parse-bbox-func-name: NvDsPostProcessParseCustomResnet
parse-bbox-instance-mask-func-name
Name of the custom instance segmentation parsing function. It is mandatory for instance segmentation network as there is no other function.
String
parse-bbox-instance-mask-func-name: NvDsPostProcessParseCustomMrcnnTLTV2
¶ Property
Meaning
Type and Range
Example
topk
Keep only top K objects with highest detection scores.
Integer, >0. -1 to disable
topk: 10
nms-iou-threshold
Maximum IOU score between two proposals after which the proposal with the lower confidence will be rejected.
Float, >0.0
nms-iou-threshold: 0.2
pre-cluster-threshold
Detection threshold to be applied prior to clustering operation
Float, >0.0
pre-cluster-threshold: 0.5
post-cluster-threshold
Detection threshold to be applied post clustering operation
Float, >0.0
post-cluster-threshold: 0.5
eps
Epsilon values for DBSCAN algorithm
Float, >0.0
eps: 0.2
dbscan-min-score
Minimum sum of confidence of all the neighbors in a cluster for it to be considered a valid cluster.
Float, >0.0
dbscan-min-score: 0.7
Gst Properties¶
The following table describes the Gst properties of the Gst-nvdspostprocess plugin.
¶ Property
Meaning
Type and Range
Example notes
gpu-id
Device ID of GPU to use for post-processing (dGPU only)
Integer,0-4,294,967,295
gpu-id=1
postprocesslib-name
Low level Post process library to be used for output parsing
string
postprocesslib-name=./postprocesslib_impl/libpostprocess_impl.so
postprocesslib-config-file
Set postprocess yaml config file to be used
string
postprocesslib-config-file= config_segmentation_semantic.yml
Sample pipelines¶
Given below are some sample pipelines, please set appropriate configuration file and library paths.
For multi-stream detector and classifier (dGPU):
gst-launch-1.0 uridecodebin \
uri=file:///opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h264.mp4 \
! m.sink_0 nvstreammux name=m width=1920 height=1080 batch-size=2 ! \
nvinfer config-file-path= \
/opt/nvidia/deepstream/deepstream/samples/configs/deepstream-app/config_infer_primary.txt \
! nvinfer config-file-path= config_infer_secondary_carcolor_postprocess.txt \
! nvdspostprocess \
postprocesslib-config-file=config_classifier_car_color.yml \
postprocesslib-name= ./postprocesslib_impl/libpostprocess_impl.so ! nvinfer \
config-file-path= config_infer_secondary_carmake_postprocess.txt \
! nvdspostprocess \
postprocesslib-config-file=config_classifier_car_make.yml \
postprocesslib-name= ./postprocesslib_impl/libpostprocess_impl.so ! nvinfer \
config-file-path= config_infer_secondary_vehicletypes_postprocess.txt \
! nvdspostprocess postprocesslib-config-file= \
config_classifier_vehicle_type.yml postprocesslib-name= \
./postprocesslib_impl/libpostprocess_impl.so ! nvmultistreamtiler ! nvvideoconvert \
gpu-id=0 ! nvdsosd ! nveglglessink sync=1 -v uridecodebin \
uri=file:///opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h264.mp4 ! m.sink_1
For multi-stream detector and classifier (Jetson):
gst-launch-1.0 uridecodebin \
uri=file:///opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h264.mp4 \
! m.sink_0 nvstreammux name=m width=1920 height=1080 batch-size=2 ! \
nvinfer config-file-path= \
/opt/nvidia/deepstream/deepstream/samples/configs/deepstream-app/config_infer_primary.txt \
! nvinfer config-file-path= config_infer_secondary_carcolor_postprocess.txt \
! nvdspostprocess \
postprocesslib-config-file=config_classifier_car_color.yml \
postprocesslib-name= ./postprocesslib_impl/libpostprocess_impl.so ! nvinfer \
config-file-path= config_infer_secondary_carmake_postprocess.txt \
! nvdspostprocess \
postprocesslib-config-file=config_classifier_car_make.yml \
postprocesslib-name= ./postprocesslib_impl/libpostprocess_impl.so ! nvinfer \
config-file-path= config_infer_secondary_vehicletypes_postprocess.txt \
! nvdspostprocess postprocesslib-config-file= \
config_classifier_vehicle_type.yml postprocesslib-name= \
./postprocesslib_impl/libpostprocess_impl.so ! nvmultistreamtiler ! nvvideoconvert \
gpu-id=0 ! nvdsosd ! nvegltransform ! nveglglessink sync=1 -v uridecodebin \
uri=file:///opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h264.mp4 ! m.sink_1
For single stream segmentation model (dGPU):
gst-launch-1.0 uridecodebin \
uri=file:///opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h265.mp4 \
! m.sink_0 nvstreammux name=m width=1920 height=1080 batch-size=1 ! \
nvinfer config-file-path= \
config_infer_segmentation_semantic_post_process.txt ! nvdspostprocess \
postprocesslib-config-file= config_segmentation_semantic.yml \
postprocesslib-name= ./postprocesslib_impl/libpostprocess_impl.so ! queue ! nvsegvisual ! \
nvmultistreamtiler ! nvvideoconvert gpu-id=0 ! nvdsosd ! nveglglessink \
sync=1 -v
For single stream segmentation model (Jetson):
gst-launch-1.0 uridecodebin \
uri=file:///opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h265.mp4 \
! m.sink_0 nvstreammux name=m width=1920 height=1080 batch-size=1 ! \
nvinfer config-file-path= \
config_infer_segmentation_semantic_post_process.txt ! nvdspostprocess \
postprocesslib-config-file= config_segmentation_semantic.yml \
postprocesslib-name= ./postprocesslib_impl/libpostprocess_impl.so ! queue ! nvsegvisual ! \
nvmultistreamtiler ! nvvideoconvert gpu-id=0 ! nvdsosd ! nvegltransform ! nveglglessink \
sync=1 -v