Program Listing for File serializers.cpp

(Latest Version)

Return to documentation for file (morpheus/_lib/src/io/serializers.cpp)

Copy
Copied!
            

/* * SPDX-FileCopyrightText: Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "morpheus/io/serializers.hpp" #include "morpheus/objects/table_info_data.hpp" #include "morpheus/utilities/cudf_util.hpp" #include <cudf/io/csv.hpp> #include <cudf/io/data_sink.hpp> #include <cudf/io/parquet.hpp> #include <cudf/io/types.hpp> // for column_name_info, sink_info, table_metadata #include <cudf/table/table_view.hpp> #include <cudf/types.hpp> #include <glog/logging.h> #include <pybind11/cast.h> #include <pybind11/gil.h> #include <pybind11/pybind11.h> #include <pybind11/pytypes.h> #include <pybind11/stl.h> // IWYU pragma: keep #include <rmm/mr/device/per_device_resource.hpp> #include <array> // for array #include <cstddef> // for size_t #include <exception> // for exception #include <fstream> #include <numeric> #include <sstream> // IWYU pragma: keep #include <vector> // IWYU pragma: no_include namespace morpheus { namespace py = pybind11; using namespace py::literals; using namespace std::string_literals; class OStreamSink : public cudf::io::data_sink { public: OStreamSink(std::ostream& stream) : m_stream(stream) {} void host_write(void const* data, size_t size) override { m_stream.write(static_cast<char const*>(data), size); m_bytest_written += size; } void flush() override { m_stream.flush(); } size_t bytes_written() override { return m_bytest_written; } private: std::ostream& m_stream; size_t m_bytest_written{0}; }; void table_to_csv( const TableInfoData& tbl, std::ostream& out_stream, bool include_header, bool include_index_col, bool flush) { auto column_names = tbl.column_names; cudf::size_type start_col = 1; if (include_index_col) { start_col = 0; column_names.insert(column_names.begin(), ""s); // insert the id column } std::vector<cudf::size_type> col_idexes(column_names.size()); std::iota(col_idexes.begin(), col_idexes.end(), start_col); auto tbl_view = tbl.table_view.select(col_idexes); OStreamSink sink(out_stream); auto destination = cudf::io::sink_info(&sink); auto options_builder = cudf::io::csv_writer_options_builder(destination, tbl_view) .include_header(include_header) .true_value("True"s) .false_value("False"s); cudf::io::table_metadata metadata{}; if (include_header) { metadata.column_names = column_names; // After cuDF PR #11364, use schema_info instead of column_names (actually just set both) metadata.schema_info = std::vector<cudf::io::column_name_info>(); for (auto& name : column_names) { metadata.schema_info.emplace_back(cudf::io::column_name_info{name}); } options_builder = options_builder.metadata(&metadata); } cudf::io::write_csv(options_builder.build(), rmm::mr::get_current_device_resource()); if (flush) { sink.flush(); } } void df_to_csv(const TableInfo& tbl, std::ostream& out_stream, bool include_header, bool include_index_col, bool flush) { table_to_csv(TableInfoData{tbl.get_view(), tbl.get_index_names(), tbl.get_column_names()}, out_stream, include_header, include_index_col, flush); } std::string df_to_csv(const TableInfo& tbl, bool include_header, bool include_index_col) { // Create an ostringstream and use that with the overload accepting an ostream std::ostringstream out_stream; df_to_csv(tbl, out_stream, include_header, include_index_col); return out_stream.str(); } void table_to_json(py::object tbl, std::ostream& out_stream, bool include_index_col, bool flush) { if (!include_index_col) { LOG(WARNING) << "Ignoring include_index_col=false as this isn't supported by cuDF"; } std::string results; // no cpp impl for to_json, instead python module converts to pandas and calls to_json { py::gil_scoped_acquire gil; py::object StringIO = py::module_::import("io").attr("StringIO"); auto buffer = StringIO(); try { py::dict kwargs = py::dict("orient"_a = "records", "lines"_a = true); tbl.attr("to_json")(buffer, **kwargs); buffer.attr("seek")(0); } catch (std::exception& ex) { LOG(ERROR) << "Error during serialization to JSON. Message: " << ex.what(); throw ex; } py::object pyresults = buffer.attr("getvalue")(); results = pyresults.cast<std::string>(); } // Now write the contents to the stream out_stream.write(results.data(), results.size()); if (flush) { out_stream.flush(); } } void df_to_json(MutableTableInfo& tbl, std::ostream& out_stream, bool include_index_col, bool flush) { py::gil_scoped_acquire gil; auto df = CudfHelper::table_from_table_info(tbl); table_to_json(std::move(df), out_stream, include_index_col, flush); } std::string df_to_json(MutableTableInfo& tbl, bool include_index_col) { // Create an ostringstream and use that with the overload accepting an ostream std::ostringstream out_stream; df_to_json(tbl, out_stream, include_index_col); return out_stream.str(); } void table_to_parquet( const TableInfoData& tbl, std::ostream& out_stream, bool include_header, bool include_index_col, bool flush) { auto column_names = tbl.column_names; cudf::size_type start_col = 1; if (include_index_col) { start_col = 0; column_names.insert(column_names.begin(), ""s); // insert the id column } std::vector<cudf::size_type> col_idexes(column_names.size()); std::iota(col_idexes.begin(), col_idexes.end(), start_col); auto tbl_view = tbl.table_view.select(col_idexes); OStreamSink sink(out_stream); auto destination = cudf::io::sink_info(&sink); auto options_builder = cudf::io::parquet_writer_options_builder(destination, tbl_view); cudf::io::write_parquet(options_builder.build(), rmm::mr::get_current_device_resource()); if (flush) { sink.flush(); } } void df_to_parquet( const TableInfo& tbl, std::ostream& out_stream, bool include_header, bool include_index_col, bool flush) { table_to_parquet(TableInfoData{tbl.get_view(), tbl.get_index_names(), tbl.get_column_names()}, out_stream, include_header, include_index_col, flush); } std::string df_to_parquet(const TableInfo& tbl, bool include_header, bool include_index_col) { // Create an ostringstream and use that with the overload accepting an ostream std::ostringstream out_stream; df_to_parquet(tbl, out_stream, include_header, include_index_col); return out_stream.str(); } template <typename T> T get_with_default(const py::dict& d, const std::string& key, T default_value) { if (d.contains(key)) { return d[key.c_str()].cast<T>(); } return default_value; } void SerializersProxy::write_df_to_file(pybind11::object df, std::string filename, FileTypes file_type, const py::kwargs& kwargs) { if (file_type == FileTypes::Auto) { file_type = determine_file_type(filename); // throws if it is unable to determine the type } std::ofstream out_file; out_file.open(filename); switch (file_type) { case FileTypes::JSON: { table_to_json(df, out_file, get_with_default(kwargs, "include_index_col", true), get_with_default(kwargs, "flush", false)); break; } case FileTypes::CSV: { table_to_csv(CudfHelper::CudfHelper::table_info_data_from_table(df), out_file, get_with_default(kwargs, "include_header", true), get_with_default(kwargs, "include_index_col", true), get_with_default(kwargs, "flush", false)); break; } case FileTypes::Auto: default: throw std::logic_error(MORPHEUS_CONCAT_STR("Unsupported filetype: " << file_type)); } } } // namespace morpheus

© Copyright 2023, NVIDIA. Last updated on Apr 11, 2023.