Real-World Application: Phishing Detection

The previous example demonstrated how to create a simple stage and use it in the context of a pipeline, we’ll move on to a more advanced example that is representative of what we might want to do in a real-world situation. Given a set of records, each of which represents an email, suppose we want to predict which records correspond to fraudulent emails.

As part of this process, we might want to use a classification model trained on various pieces of metadata, such as recipient count, in addition to the raw content of each email. If we suppose this is true for our example, we need to build and connect a pre-processing stage to attach this information to each record before applying our classifier.

For this task, we’ll need to define a new stage, which we will call our RecipientFeaturesStage, that will:

  1. Receive an input corresponding to an email.

  2. Count the number of recipients in the email’s metadata.

  3. Emit a Morpheus MessageMeta object that will contain the record content along with the augmented metadata.

For this stage, the code will be similar to the previous example with a few notable changes. We will be working with the MessageMeta class. This is a Morpheus message containing a cuDF DataFrame. Since we will expect our new stage to operate on MessageMeta types, our new accepted_types method is defined as:

Copy
Copied!
            

def accepted_types(self) -> typing.Tuple: return (MessageMeta,)

Next, we will update our on_data method to perform the actual work. We grab a reference to the incoming message’s df attribute. It is important to note that message is a reference, and any changes made to it or its members (such as df) will be performed in place on the existing message instance.

Copy
Copied!
            

def on_data(self, message: MessageMeta) -> MessageMeta: # Open the DataFrame from the incoming message for in-place modification with message.mutable_dataframe() as df: df['to_count'] = df['To'].str.count('@') df['bcc_count'] = df['BCC'].str.count('@') df['cc_count'] = df['CC'].str.count('@') df['total_recipients'] = df['to_count'] + df['bcc_count'] + df['cc_count'] # Attach features to string data df['data'] = (df['to_count'].astype(str) + '[SEP]' + df['bcc_count'].astype(str) + '[SEP]' + df['cc_count'].astype(str) + '[SEP]' + df['total_recipients'].astype(str) + '[SEP]' + df['Message']) # Return the message for the next stage return message

In the above example we added five new fields to the DataFrame. Since these fields and their types are known to us ahead of time, as an optimization we can ask Morpheus to pre-allocate these new fields when the DataFrame is first constructed. To do this we populate the _needed_columns attribute in our constructor:

Copy
Copied!
            

def __init__(self, config: Config): super().__init__(config) # This stage adds new columns to the DataFrame, as an optimization we define the columns that are needed, # ensuring that these columns are pre-allocated with null values. This action is performed by Morpheus for any # stage defining this attribute. self._needed_columns.update({ 'to_count': TypeId.INT32, 'bcc_count': TypeId.INT32, 'cc_count': TypeId.INT32, 'total_recipients': TypeId.INT32, 'data': TypeId.STRING })

Refer to the Stage Constructors section for more details.

If instead mutating the DataFrame in place is undesirable, we could make a copy of the DataFrame with the MessageMeta.copy_dataframe method and return a new MessageMeta. Note however that this would come at the cost of performance and increased memory usage. We could do this by changing the on_data method to:

Copy
Copied!
            

def on_data(self, message: MessageMeta) -> MessageMeta: # Get a copy of the DataFrame from the incoming message df = message.copy_dataframe() df['to_count'] = df['To'].str.count('@') df['bcc_count'] = df['BCC'].str.count('@') df['cc_count'] = df['CC'].str.count('@') df['total_recipients'] = df['to_count'] + df['bcc_count'] + df['cc_count'] # Attach features to string data df['data'] = (df['to_count'].astype(str) + '[SEP]' + df['bcc_count'].astype(str) + '[SEP]' + df['cc_count'].astype(str) + '[SEP]' + df['total_recipients'].astype(str) + '[SEP]' + df['Message']) # Return a new message with our updated DataFrame for the next stage return MessageMeta(df)

Since the purpose of this stage is specifically tied to pre-processing text data for an NLP pipeline, when we register the stage, we will explicitly limit the stage to NLP pipelines:

Copy
Copied!
            

@register_stage("recipient-features", modes=[PipelineModes.NLP]) class RecipientFeaturesStage(SinglePortStage):

Our _build_single method remains unchanged from the previous example; even though we are modifying the incoming messages, our input and output types remain the same.

The Completed Preprocessing Stage

Copy
Copied!
            

import typing import mrc from morpheus.common import TypeId from morpheus.cli.register_stage import register_stage from morpheus.config import Config from morpheus.config import PipelineModes from morpheus.messages.message_meta import MessageMeta from morpheus.pipeline.single_port_stage import SinglePortStage from morpheus.pipeline.stream_pair import StreamPair @register_stage("recipient-features", modes=[PipelineModes.NLP]) class RecipientFeaturesStage(SinglePortStage): """ Pre-processing stage which counts the number of recipients in an email's metadata. Parameters ---------- config : morpheus.config.Config Pipeline configuration instance. """ def __init__(self, config: Config): super().__init__(config) # This stage adds new columns to the DataFrame, as an optimization we define the columns that are needed, # ensuring that these columns are pre-allocated with null values. This action is performed by Morpheus for any # stage defining this attribute. self._needed_columns.update({ 'to_count': TypeId.INT32, 'bcc_count': TypeId.INT32, 'cc_count': TypeId.INT32, 'total_recipients': TypeId.INT32, 'data': TypeId.STRING }) @property def name(self) -> str: return "recipient-features" def accepted_types(self) -> typing.Tuple: return (MessageMeta, ) def supports_cpp_node(self) -> bool: return False def on_data(self, message: MessageMeta) -> MessageMeta: # Open the DataFrame from the incoming message for in-place modification with message.mutable_dataframe() as df: df['to_count'] = df['To'].str.count('@') df['bcc_count'] = df['BCC'].str.count('@') df['cc_count'] = df['CC'].str.count('@') df['total_recipients'] = df['to_count'] + df['bcc_count'] + df['cc_count'] # Attach features to string data df['data'] = (df['to_count'].astype(str) + '[SEP]' + df['bcc_count'].astype(str) + '[SEP]' + df['cc_count'].astype(str) + '[SEP]' + df['total_recipients'].astype(str) + '[SEP]' + df['Message']) # Return the message for the next stage return message def _build_single(self, builder: mrc.Builder, input_stream: StreamPair) -> StreamPair: node = builder.make_node(self.unique_name, self.on_data) builder.make_edge(input_stream[0], node) return node, input_stream[1]

Now we’ll use the RecipientFeaturesStage that we just made in a real-world pipeline to detect fraudulent emails. The pipeline we will be building makes use of the TritonInferenceStage which is a pre-defined Morpheus stage designed to support the execution of Natural Language Processing (NLP) models via NVIDIA’s Triton Inference Server. NVIDIA Triton Inference Server allows for GPU accelerated ML/DL and seamless co-location and execution of a wide variety of model frameworks. For our application, we will be using the phishing-bert-onnx model, which is included with Morpheus in the models/triton-model-repo/ directory.

It’s important to note here that Triton is a service that is external to the Morpheus pipeline and often will not reside on the same machine(s) as the rest of the pipeline. The TritonInferenceStage will use HTTP and gRPC network protocols to allow us to interact with the machine learning models that are hosted by the Triton server.

Launching Triton

Triton will need to be running while we execute our pipeline. For simplicity, we will launch it locally inside of a Docker container.

Note: This step assumes you have both Docker and the NVIDIA Container Toolkit installed.

From the root of the Morpheus project we will launch a Triton Docker container with the models directory mounted into the container:

Copy
Copied!
            

docker run --rm -ti --gpus=all -p8000:8000 -p8001:8001 -p8002:8002 \ -v $PWD/models:/models \ nvcr.io/nvidia/tritonserver:22.08-py3 \ tritonserver --model-repository=/models/triton-model-repo \ --exit-on-error=false \ --log-info=true \ --strict-readiness=false \ --disable-auto-complete-config \ --model-control-mode=explicit \ --load-model=phishing-bert-onnx

Once we have Triton running, we can verify that it is healthy using curl. The /v2/health/live endpoint should return a 200 status code:

Copy
Copied!
            

curl -v "localhost:8000/v2/health/live"

We can also query Triton for the available models:

Copy
Copied!
            

curl -X POST "localhost:8000/v2/repository/index"

Let’s ask Triton for some information about the phishing-bert-onnx model which we are going to be using, parsing the large JSON output with jq:

Copy
Copied!
            

curl "localhost:8000/v2/models/phishing-bert-onnx/config" | jq

Output:

Copy
Copied!
            

{ "name": "phishing-bert-onnx", "platform": "onnxruntime_onnx", "backend": "onnxruntime", "version_policy": { "latest": { "num_versions": 1 } }, "max_batch_size": 32, "input": [ { "name": "input_ids", "data_type": "TYPE_INT64", "format": "FORMAT_NONE", "dims": [ 128 ], "is_shape_tensor": false, "allow_ragged_batch": false, "optional": false }, { "name": "attention_mask", "data_type": "TYPE_INT64", "format": "FORMAT_NONE", "dims": [ 128 ], "is_shape_tensor": false, "allow_ragged_batch": false, "optional": false } ], "output": [ { "name": "output", "data_type": "TYPE_FP32", "dims": [ 2 ], "label_filename": "", "is_shape_tensor": false } ], "batch_input": [], "batch_output": [], "optimization": { "priority": "PRIORITY_DEFAULT", "execution_accelerators": { "gpu_execution_accelerator": [ { "name": "tensorrt", "parameters": { "max_workspace_size_bytes": "1073741824", "precision_mode": "FP16" } } ], "cpu_execution_accelerator": [] }, "input_pinned_memory": { "enable": true }, "output_pinned_memory": { "enable": true }, "gather_kernel_buffer_threshold": 0, "eager_batching": false }, "dynamic_batching": { "preferred_batch_size": [ 1, 4, 8, 12, 16, 20, 24, 28, 32 ], "max_queue_delay_microseconds": 50000, "preserve_ordering": false, "priority_levels": 0, "default_priority_level": 0, "priority_queue_policy": {} }, "instance_group": [ { "name": "phishing-bert-onnx", "kind": "KIND_GPU", "count": 1, "gpus": [ 0 ], "secondary_devices": [], "profile": [], "passive": false, "host_policy": "" } ], "default_model_filename": "model.onnx", "cc_model_filenames": {}, "metric_tags": {}, "parameters": {}, "model_warmup": [] }

From this information, we note that the expected dimensions of the model inputs is "dims": [128].

Defining our Pipeline

Let’s set up the paths for our input and output files. For simplicity, we assume that the MORPHEUS_ROOT environment variable is set to the root of the Morpheus project repository. In a production deployment, it may be more prudent to replace our usage of environment variables with command-line flags or a dedicated configuration management library.

Copy
Copied!
            

import os import morpheus from morpheus.utils.logger import configure_logging def run_pipeline(): # Enable the default logger configure_logging(log_level=logging.INFO) triton_url = os.environ.get('TRITON_URL', 'localhost:8001') root_dir = os.environ['MORPHEUS_ROOT'] out_dir = os.environ.get('OUT_DIR', '/tmp') labels_file = os.path.join(morpheus.DATA_DIR, 'labels_phishing.txt') vocab_file = os.path.join(morpheus.DATA_DIR, 'bert-base-uncased-hash.txt') input_file = os.path.join(root_dir, 'examples/data/email_with_addresses.jsonlines') results_file = os.path.join(out_dir, 'detections.jsonlines')

To start, we will need to instantiate and set a few attributes of the Config class. This object is used for configuration options that are global to the pipeline as a whole. We will provide this object to each stage along with stage-specific configuration parameters.

Copy
Copied!
            

config = Config() config.mode = PipelineModes.NLP config.num_threads = os.cpu_count() config.feature_length = 128 with open(labels_file) as fh: config.class_labels = [x.strip() for x in fh]

First we set our pipeline mode to NLP. Next, we set the num_threads property to match the number of cores in our system.

The feature_length property needs to match the dimensions of the model inputs, which we got from Triton in the previous section using the model’s /config endpoint.

Ground truth classification labels are read from the morpheus/data/labels_phishing.txt file included in Morpheus.

Now that our config object is populated, we move on to the pipeline itself. We will be using the same input file from the previous example, and to tokenize the input data we will use Morpheus’ PreprocessNLPStage.

This stage uses the cudf subword tokenizer to transform strings into a tensor of numbers to be fed into the neural network model. Rather than split the string by characters or whitespaces, we split them into meaningful subwords based upon the occurrence of the subwords in a large training corpus. You can find more details here: https://arxiv.org/abs/1810.04805v2. All we need to know for now is that the text will be converted to subword token ids based on the vocabulary file that we provide (vocab_hash_file=vocab file).

Let’s go ahead and instantiate our PreprocessNLPStage and add it to the pipeline:

Copy
Copied!
            

pipeline.add_stage( PreprocessNLPStage( config, vocab_hash_file=vocab_file, truncation=True, do_lower_case=True, add_special_tokens=False))

In addition to providing the Config object that we defined above, we also configure this stage to:

  • Use the morpheus/data/bert-base-uncased-hash.txt vocabulary file for its subword token ids (vocab_hash_file=vocab_file).

  • Truncate the length of the text to a max number of tokens (truncation=True).

  • Change the casing to all lowercase (do_lower_case=True).

  • Refrain from adding the default BERT special tokens like [SEP] for separation between two sentences and [CLS] at the start of the text (add_special_tokens=False).

Note that the tokenizer parameters and vocabulary hash file should exactly match what was used for tokenization during the training of the NLP model.

At this point, we have a pipeline that reads in a set of records and preprocesses them with the metadata required for our classifier to make predictions. Our next step is to define a stage that applies a machine learning model to our MessageMeta object. To accomplish this, we will be using Morpheus’ TritonInferenceStage. This stage will handle communication with the phishing-bert-onnx model, which we provided to the Triton Docker container via the models directory mount.

Next we will add a monitor stage to measure the inference rate as well as a filter stage to filter out any results below a probability threshold of 0.9.

Copy
Copied!
            

# Add an inference stage pipeline.add_stage( TritonInferenceStage( config, model_name='phishing-bert-onnx', server_url=triton_url, force_convert_inputs=True, )) pipeline.add_stage(MonitorStage(config, description="Inference Rate", smoothing=0.001, unit="inf")) # Filter values lower than 0.9 pipeline.add_stage(FilterDetectionsStage(config, threshold=0.9))

Lastly, we will save our results to disk. For this purpose, we are using two stages that are often used in conjunction with each other: SerializeStage and WriteToFileStage.

The SerializeStage is used to include and exclude columns as desired in the output. Importantly, it also handles conversion from the MultiMessage-derived output type that is used by the FilterDetectionsStage to the MessageMeta class that is expected as input by the WriteToFileStage.

The WriteToFileStage will append message data to the output file as messages are received. Note however that for performance reasons the WriteToFileStage does not flush its contents out to disk every time a message is received. Instead, it relies on the underlying buffered output stream to flush as needed, and then will close the file handle on shutdown.

Copy
Copied!
            

# Write the file to the output pipeline.add_stage(SerializeStage(config)) pipeline.add_stage(WriteToFileStage(config, filename=results_file, overwrite=True))

Note that we didn’t specify the output format. In our example, the result file contains the extension .jsonlines. Morpheus will infer the output format based on the extension. At time of writing the extensions that Morpheus will infer are: .csv, .json & .jsonlines

To explicitly set the output format we could specify the file_type argument to the WriteToFileStage which is an enumeration defined in morpheus.common.FileTypes. Current values defined are:

  • FileTypes.Auto

  • FileTypes.JSON

  • FileTypes.CSV

The Completed Pipeline

Copy
Copied!
            

import logging import os import morpheus from morpheus.config import Config from morpheus.config import PipelineModes from morpheus.pipeline import LinearPipeline from morpheus.stages.general.monitor_stage import MonitorStage from morpheus.stages.inference.triton_inference_stage import TritonInferenceStage from morpheus.stages.input.file_source_stage import FileSourceStage from morpheus.stages.output.write_to_file_stage import WriteToFileStage from morpheus.stages.postprocess.filter_detections_stage import FilterDetectionsStage from morpheus.stages.postprocess.serialize_stage import SerializeStage from morpheus.stages.preprocess.deserialize_stage import DeserializeStage from morpheus.stages.preprocess.preprocess_nlp_stage import PreprocessNLPStage from morpheus.utils.logger import configure_logging from recipient_features_stage import RecipientFeaturesStage def run_pipeline(): # Enable the default logger configure_logging(log_level=logging.INFO) triton_url = os.environ.get('TRITON_URL', 'localhost:8001') root_dir = os.environ['MORPHEUS_ROOT'] out_dir = os.environ.get('OUT_DIR', '/tmp') labels_file = os.path.join(morpheus.DATA_DIR, 'labels_phishing.txt') vocab_file = os.path.join(morpheus.DATA_DIR, 'bert-base-uncased-hash.txt') input_file = os.path.join(root_dir, 'examples/data/email_with_addresses.jsonlines') results_file = os.path.join(out_dir, 'detections.jsonlines') # It's necessary to configure the pipeline for NLP mode config = Config() config.mode = PipelineModes.NLP # Set the thread count to match our cpu count config.num_threads = os.cpu_count() config.feature_length = 128 with open(labels_file) as fh: config.class_labels = [x.strip() for x in fh] # Create a linear pipeline object pipeline = LinearPipeline(config) # Set source stage pipeline.set_source(FileSourceStage(config, filename=input_file, iterative=False)) # Add our custom stage pipeline.add_stage(RecipientFeaturesStage(config)) # Add a deserialize stage pipeline.add_stage(DeserializeStage(config)) # Tokenize the input pipeline.add_stage( PreprocessNLPStage(config, vocab_hash_file=vocab_file, truncation=True, do_lower_case=True, add_special_tokens=False)) # Add a inference stage pipeline.add_stage( TritonInferenceStage( config, model_name='phishing-bert-onnx', server_url=triton_url, force_convert_inputs=True, )) # Monitor the inference rate pipeline.add_stage(MonitorStage(config, description="Inference Rate", smoothing=0.001, unit="inf")) # Filter values lower than 0.9 pipeline.add_stage(FilterDetectionsStage(config, threshold=0.9)) # Write the to the output file pipeline.add_stage(SerializeStage(config)) pipeline.add_stage(WriteToFileStage(config, filename=results_file, overwrite=True)) # Run the pipeline pipeline.run() if __name__ == "__main__": run_pipeline()

Alternate Morpheus CLI example

The above pipeline could also be constructed using the Morpheus CLI.

From the root of the Morpheus repo run:

Copy
Copied!
            

morpheus --log_level=debug --plugin examples/developer_guide/2_1_real_world_phishing/recipient_features_stage.py \ run pipeline-nlp --labels_file=data/labels_phishing.txt --model_seq_length=128 \ from-file --filename=examples/data/email_with_addresses.jsonlines \ recipient-features \ deserialize \ preprocess --vocab_hash_file=data/bert-base-uncased-hash.txt --truncation=true --do_lower_case=true --add_special_tokens=false \ inf-triton --model_name=phishing-bert-onnx --server_url=localhost:8001 --force_convert_inputs=true \ monitor --description="Inference Rate" --smoothing=0.001 --unit=inf \ filter --threshold=0.9 \ serialize \ to-file --filename=/tmp/detections.jsonlines --overwrite

In our RecipientFeaturesStage example we added a constructor to our stage, however we didn’t go into much detail on the details. Every stage constructor must receive an instance of a morpheus.config.Config object as its first argument and is then free to define additional stage-specific arguments after that. The Morpheus config object will contain configuration parameters needed by multiple stages in the pipeline, and the constructor in each Morpheus stage is free to inspect these. In contrast, parameters specific to a single stage are typically defined as constructor arguments. It is a best practice to perform any necessary validation checks in the constructor, and raising an exception in the case of mis-configuration. This allows us to fail early rather than after the pipeline has started.

In our RecipientFeaturesStage example, we hard-coded the Bert separator token. Let’s instead refactor the code to receive that as a constructor argument. This new constructor argument is documented following the numpydoc formatting style allowing it to be documented properly for both API and CLI users. Let’s also take the opportunity to verify that the pipeline mode is set to morpheus.config.PipelineModes.NLP.

Note: Setting the pipeline mode in the register_stage decorator restricts usage of our stage to NLP pipelines when using the Morpheus command line tool, however there is no such enforcement with the Python API.

Our refactored class definition is now:

Copy
Copied!
            

@register_stage("recipient-features", modes=[PipelineModes.NLP]) class RecipientFeaturesStage(SinglePortStage): """ Pre-processing stage which counts the number of recipients in an email's metadata. Parameters ---------- config : morpheus.config.Config Pipeline configuration instance. sep_token : str Bert separator token. """ def __init__(self, config: Config, sep_token: str = '[SEP]'): super().__init__(config) if config.mode != PipelineModes.NLP: raise RuntimeError("RecipientFeaturesStage must be used in a pipeline configured for NLP") if len(sep_token): self._sep_token = sep_token else: raise ValueError("sep_token cannot be an empty string") # This stage adds new columns to the DataFrame, as an optimization we define the columns that are needed, # ensuring that these columns are pre-allocated with null values. This action is performed by Morpheus for any # stage defining this attribute. self._needed_columns.update({ 'to_count': TypeId.INT32, 'bcc_count': TypeId.INT32, 'cc_count': TypeId.INT32, 'total_recipients': TypeId.INT32, 'data': TypeId.STRING }) @property def name(self) -> str: return "recipient-features" def accepted_types(self) -> typing.Tuple: return (MessageMeta, ) def supports_cpp_node(self) -> bool: return False def on_data(self, message: MessageMeta) -> MessageMeta: # Open the DataFrame from the incoming message for in-place modification with message.mutable_dataframe() as df: df['to_count'] = df['To'].str.count('@') df['bcc_count'] = df['BCC'].str.count('@') df['cc_count'] = df['CC'].str.count('@') df['total_recipients'] = df['to_count'] + df['bcc_count'] + df['cc_count'] # Attach features to string data df['data'] = (df['to_count'].astype(str) + self._sep_token + df['bcc_count'].astype(str) + self._sep_token + df['cc_count'].astype(str) + self._sep_token + df['total_recipients'].astype(str) + self._sep_token + df['Message']) # Return the message for the next stage return message def _build_single(self, builder: mrc.Builder, input_stream: StreamPair) -> StreamPair: node = builder.make_node(self.unique_name, self.on_data) builder.make_edge(input_stream[0], node) return node, input_stream[1]

If we were to make the above changes, we can view the resulting help string with:

Copy
Copied!
            

morpheus --plugin examples/developer_guide/2_1_real_world_phishing/recipient_features_stage.py run pipeline-nlp recipient-features --help

Copy
Copied!
            

Configuring Pipeline via CLI Usage: morpheus run pipeline-nlp recipient-features [OPTIONS] Pre-processing stage which counts the number of recipients in an email's metadata. Options: --sep_token TEXT Bert separator token. [default: [SEP]] --help Show this message and exit.

Creating a new source stage is similar to defining any other stage with a few differences. First, we will be subclassing SingleOutputSource including the PreallocatorMixin. Second, the required methods are the name property, _build_source and supports_cpp_node methods.

In this example, we will create a source that reads messages from a RabbitMQ queue using the pika client for Python. For simplicity, we will assume that authentication is not required for our RabbitMQ exchange and that the body of the RabbitMQ messages will be JSON formatted. Both authentication and support for other formats could be easily added later.

The PreallocatorMixin when added to a stage class, typically a source stage, indicates that the stage emits newly constructed DataFrames either directly or contained in a MessageMeta instance into the pipeline. Adding this mixin allows any columns needed by other stages to be inserted into the DataFrame.

The _build_source method is similar to the _build_single method; it receives an instance of the MRC segment builder (mrc.Builder) and returns a StreamPair. However, unlike in the previous examples, source stages do not have a parent stage and therefore do not receive a StreamPair as input. Instead of building our node with make_node, we will call make_source with the parameter self.source_generator, which is a method that we will define next.

Copy
Copied!
            

def _build_source(self, builder: mrc.Builder) -> StreamPair: node = builder.make_source(self.unique_name, self.source_generator) return node, MessageMeta

The source_generator method is where most of the RabbitMQ-specific code exists. When we have a message that we wish to emit into the pipeline, we simply yield it.

Copy
Copied!
            

def source_generator(self): try: while not self._stop_requested: (method_frame, header_frame, body) = self._channel.basic_get(self._queue_name) if method_frame is not None: try: buffer = StringIO(body.decode("utf-8")) df = cudf.io.read_json(buffer, orient='records', lines=True) yield MessageMeta(df=df) except Exception as ex: logger.exception("Error occurred converting RabbitMQ message to Dataframe:{}".format(ex)) finally: self._channel.basic_ack(method_frame.delivery_tag) else: # queue is empty, sleep before polling again time.sleep(self._poll_interval.total_seconds()) finally: self._connection.close()

Note that we read messages as quickly as we can from the queue. When the queue is empty we call time.sleep, allowing for a context switch to occur if needed. We acknowledge the message (by calling basic_ack) only once we have successfully emitted the message or failed to deserialize the message. This means that if the pipeline shuts down while consuming the queue, we will not lose any messages. However, in that situation we may end up with a duplicate message (i.e., if the pipeline is shut down after we have yielded the message but before calling basic_ack).

The Completed Source Stage

Copy
Copied!
            

import logging import time from io import StringIO import mrc import pandas as pd import pika import cudf from morpheus.cli.register_stage import register_stage from morpheus.config import Config from morpheus.messages.message_meta import MessageMeta from morpheus.pipeline.preallocator_mixin import PreallocatorMixin from morpheus.pipeline.single_output_source import SingleOutputSource from morpheus.pipeline.stream_pair import StreamPair logger = logging.getLogger(__name__) @register_stage("from-rabbitmq") class RabbitMQSourceStage(PreallocatorMixin, SingleOutputSource): """ Source stage used to load messages from a RabbitMQ queue. Parameters ---------- config : morpheus.config.Config Pipeline configuration instance. host : str Hostname or IP of the RabbitMQ server. exchange : str Name of the RabbitMQ exchange to connect to. exchange_type : str RabbitMQ exchange type; defaults to `fanout`. queue_name : str Name of the queue to listen to. If left blank, RabbitMQ will generate a random queue name bound to the exchange. poll_interval : str Amount of time between polling RabbitMQ for new messages """ def __init__(self, config: Config, host: str, exchange: str, exchange_type: str = 'fanout', queue_name: str = '', poll_interval: str = '100millis'): super().__init__(config) self._connection = pika.BlockingConnection(pika.ConnectionParameters(host=host)) self._channel = self._connection.channel() self._channel.exchange_declare(exchange=exchange, exchange_type=exchange_type) result = self._channel.queue_declare(queue=queue_name, exclusive=True) # When queue_name='' we will receive a randomly generated queue name self._queue_name = result.method.queue self._channel.queue_bind(exchange=exchange, queue=self._queue_name) self._poll_interval = pd.Timedelta(poll_interval) # Flag to indicate whether or not we should stop self._stop_requested = False @property def name(self) -> str: return "from-rabbitmq" def supports_cpp_node(self) -> bool: return False def stop(self): # Indicate we need to stop self._stop_requested = True return super().stop() def _build_source(self, builder: mrc.Builder) -> StreamPair: node = builder.make_source(self.unique_name, self.source_generator) return node, MessageMeta def source_generator(self): try: while not self._stop_requested: (method_frame, header_frame, body) = self._channel.basic_get(self._queue_name) if method_frame is not None: try: buffer = StringIO(body.decode("utf-8")) df = cudf.io.read_json(buffer, orient='records', lines=True) yield MessageMeta(df=df) except Exception as ex: logger.exception("Error occurred converting RabbitMQ message to Dataframe:{}".format(ex)) finally: self._channel.basic_ack(method_frame.delivery_tag) else: # queue is empty, sleep before polling again time.sleep(self._poll_interval.total_seconds()) finally: self._connection.close()

In Morpheus, we define a stage to be a sink if it outputs the results of a pipeline to a destination external to the pipeline. Morpheus currently provides two sink stages: WriteToFileStage and WriteToKafkaStage.

Recall that in the previous section we wrote a RabbitMQSourceStage. We will now complement that by writing a sink stage that can output Morpheus data into RabbitMQ. For this example, we are again using the pika client for Python.

The code for our sink will be similar to other stages with a few changes. First, we will subclass SinglePortStage:

Copy
Copied!
            

@register_stage("to-rabbitmq") class WriteToRabbitMQStage(SinglePortStage):

In our _build_single method we will be making use of the make_sink method rather than make_node or make_source.

Copy
Copied!
            

def _build_single(self, builder: mrc.Builder, input_stream: StreamPair) -> StreamPair: node = builder.make_sink(self.unique_name, self.on_data, self.on_error, self.on_complete) builder.make_edge(input_stream[0], node) return (node, input_stream[1])

Note the return tuple contains our newly constructed node, along with the unchanged input type. Our sink will function as a pass-through allowing the possibility of other sinks to be added to the pipeline. We could, hypothetically, have a pipeline where we emit the results to both RabbitMQ and a file.

sink_deps.png

Similar to our previous examples, most of the actual business logic of the stage is contained in the on_data method. In this case, we grab a reference to the cuDF DataFrame attached to the incoming message. We then serialize to an io.StringIO buffer, which is then sent to RabbitMQ.

Copy
Copied!
            

def on_data(self, message: MessageMeta): df = message.df buffer = StringIO() df.to_json(buffer, orient='records', lines=True) body = buffer.getvalue().strip() self._channel.basic_publish(exchange=self._exchange, routing_key=self._routing_key, body=body) return message

The two new methods introduced in this example are the on_error and on_complete methods. For both methods, we want to make sure that the connection object is properly closed. Note: we didn’t close the channel object since closing the connection will also close any associated channel objects.

Copy
Copied!
            

def on_error(self, ex: Exception): logger.exception("Error occurred :{}".format(ex)) self._connection.close() def on_complete(self): self._connection.close()

The Completed Sink Stage

Copy
Copied!
            

import logging import typing from io import StringIO import pika import mrc from morpheus.cli.register_stage import register_stage from morpheus.config import Config from morpheus.messages.message_meta import MessageMeta from morpheus.pipeline.single_port_stage import SinglePortStage from morpheus.pipeline.stream_pair import StreamPair logger = logging.getLogger(__name__) @register_stage("to-rabbitmq") class WriteToRabbitMQStage(SinglePortStage): """ Source stage used to load messages from a RabbitMQ queue. Parameters ---------- config : morpheus.config.Config Pipeline configuration instance. host : str Hostname or IP of the RabbitMQ server. exchange : str Name of the RabbitMQ exchange to connect to. exchange_type : str RabbitMQ exchange type; defaults to `fanout`. routing_key : str RabbitMQ routing key if needed. """ def __init__(self, config: Config, host: str, exchange: str, exchange_type: str = 'fanout', routing_key: str = ''): super().__init__(config) self._connection = pika.BlockingConnection(pika.ConnectionParameters(host=host)) self._exchange = exchange self._routing_key = routing_key self._channel = self._connection.channel() self._channel.exchange_declare(exchange=self._exchange, exchange_type=exchange_type) @property def name(self) -> str: return "to-rabbitmq" def accepted_types(self) -> typing.Tuple: return (MessageMeta, ) def supports_cpp_node(self) -> bool: return False def _build_single(self, builder: mrc.Builder, input_stream: StreamPair) -> StreamPair: node = builder.make_sink(self.unique_name, self.on_data, self.on_error, self.on_complete) builder.make_edge(input_stream[0], node) return (node, input_stream[1]) def on_data(self, message: MessageMeta) -> MessageMeta: df = message.df buffer = StringIO() df.to_json(buffer, orient='records', lines=True) body = buffer.getvalue().strip() self._channel.basic_publish(exchange=self._exchange, routing_key=self._routing_key, body=body) return message def on_error(self, ex: Exception): logger.exception("Error occurred :{}".format(ex)) self._connection.close() def on_complete(self): self._connection.close()

For information about testing the RabbitMQSourceStage and WriteToRabbitMQStage stages refer to examples/developer_guide/2_2_rabbitmq/README.md in the root of the Morpheus repo.

© Copyright 2023, NVIDIA. Last updated on Apr 11, 2023.