Use the ColumnMappedTextInstructionDataset#
This guide explains how to use ColumnMappedTextInstructionDataset to quickly and flexibly load instruction-answer datasets for LLM fine-tuning, with minimal code changes and support for common tokenization strategies.
The ColumnMappedTextInstructionDataset is a lightweight, plug-and-play helper that lets you train on instruction-answer style corpora without writing custom Python for every new schema. You simply specify which columns map to logical fields like context, question, and answer, and the loader handles the rest automatically. This enables:
Quick prototyping across diverse instruction datasets
Schema flexibility without requiring code changes
Consistent field names for training loops, regardless of dataset source
ColumnMappedTextInstructionDataset is a map-style dataset (torch.utils.data.Dataset): it supports len(ds) and ds[i], and it loads data non-streaming.
It supports two data sources out-of-the-box:
Local JSON/JSONL files - pass a single file path or a list of paths on disk. Newline-delimited JSON works great.
Hugging Face Hub - point to any dataset repo (
org/dataset) that contains the required columns.
For streaming (including Delta Lake / Databricks), use ColumnMappedTextInstructionIterableDataset. The iterable variant always streams by design to avoid accidentally materializing entire datasets to disk/memory.
Quickstart#
The fastest way to sanity-check the loader is to point it at an existing Hugging Face dataset and print the first sample. This section provides a minimal, runnable example to help you quickly try out the dataset.
from transformers import AutoTokenizer
from nemo_automodel.components.datasets.llm.column_mapped_text_instruction_dataset import ColumnMappedTextInstructionDataset
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
ds = ColumnMappedTextInstructionDataset(
path_or_dataset_id="Muennighoff/natural-instructions",
column_mapping={
"context": "definition",
"question": "inputs",
"answer": "targets"
},
tokenizer=tokenizer,
answer_only_loss_mask=True,
)
sample = ds[0]
print(sample.keys())
# Typical keys include: input_ids, labels, attention_mask (and an internal ___PAD_TOKEN_IDS___ helper).
# Note: when answer_only_loss_mask=True, prompt tokens are masked in labels with -100
# (the standard CrossEntropy "ignore_index").
The code above is intended only for a quick sanity check of the dataset and its tokenization output. For training or production use, configure the dataset using YAML as shown below. YAML offers a reproducible, maintainable, and scalable way to specify dataset and tokenization settings.
Usage Examples#
This section provides practical usage examples, including how to load remote datasets, work with local files, and configure pipelines using YAML recipes.
Local JSONL Example#
Assume you have a local newline-delimited JSON file at /data/my_corpus.jsonl
with the simple schema {instruction, output}. A few sample rows:
{"instruction": "Translate 'Hello' to French", "output": "Bonjour"}
{"instruction": "Summarize the planet Neptune.", "output": "Neptune is the eighth planet from the Sun."}
You can load it using Python code like:
local_ds = ColumnMappedTextInstructionDataset(
path_or_dataset_id=["/data/my_corpus_1.jsonl", "/data/my_corpus_2.jsonl"], # can also be a single path (string)
column_mapping={
"question": "instruction",
"answer": "output",
},
tokenizer=tokenizer,
answer_only_loss_mask=False, # compute loss over full sequence
)
print(local_ds[0].keys()) # dict_keys(['input_ids', 'labels', 'attention_mask', '___PAD_TOKEN_IDS___'])
You can configure the dataset entirely from your recipe YAML. For example:
dataset:
_target_: nemo_automodel.components.datasets.llm.column_mapped_text_instruction_dataset.ColumnMappedTextInstructionDataset
path_or_dataset_id:
- /data/my_corpus_1.jsonl
- /data/my_corpus_2.jsonl
column_mapping:
question: instruction
answer: output
answer_only_loss_mask: false
Remote Dataset Example#
In the following section, we demonstrate how to load the instruction-tuning corpus
Muennighoff/natural-instructions.
The dataset schema is {task_name, id, definition, inputs, targets}.
The following are examples from the training split:
{
"task_name": "task001_quoref_question_generation",
"id": "task001-abc123",
"definition": "In this task, you're given passages that...",
"inputs": "Passage: A man is sitting at a piano...",
"targets": "What is the first name of the person who doubted it would be explosive?"
}
{
"task_name": "task002_math_word_problems",
"id": "task002-def456",
"definition": "Solve the following word problem.",
"inputs": "If there are 3 apples and you take 2...",
"targets": "1"
}
For basic QA fine-tuning, we usually map definition → context, inputs → question, and targets → answer as follows:
from nemo_automodel.components.datasets.llm.column_mapped_text_instruction_dataset import (
ColumnMappedTextInstructionDataset,
)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
remote_ds = ColumnMappedTextInstructionDataset(
path_or_dataset_id="Muennighoff/natural-instructions", # Hugging Face repo ID
column_mapping={
"context": "definition", # high-level context
"question": "inputs", # the actual prompt / input
"answer": "targets", # expected answer string
},
tokenizer=tokenizer,
split="train[:5%]", # demo slice; omit (i.e., `split="train",`) for full data
answer_only_loss_mask=True,
)
You can configure the entire dataset directly from your recipe YAML. For example:
# dataset section of your recipe's config.yaml
dataset:
_target_: nemo_automodel.components.datasets.llm.column_mapped_text_instruction_dataset.ColumnMappedTextInstructionDataset
path_or_dataset_id: Muennighoff/natural-instructions
split: train
column_mapping:
context: definition
question: inputs
answer: targets
answer_only_loss_mask: true
Streaming / Delta Lake / Databricks#
Note
ColumnMappedTextInstructionDataset does not support streaming or Delta Lake / Databricks sources. For those, use ColumnMappedTextInstructionIterableDataset.
Note
Delta Lake / Databricks (including delta_sql_query and authentication) is supported only by ColumnMappedTextInstructionIterableDataset. See column-mapped-text-instruction-iterable-dataset.md for details.
Advanced Options#
Arg |
Default |
Description |
|---|---|---|
|
|
Which split to pull from a HF repo ( |
|
|
Name of the Hugging Face dataset configuration/subset to load. |
|
|
Mask prompt tokens in |
|
|
If |
|
|
Optional max sequence length; used for padding/truncation when enabled. |
|
|
Padding strategy passed to the tokenizer ( |
|
|
Truncation strategy passed to the tokenizer ( |
|
|
Optionally load only the first (N) samples (useful for debugging). |
Tokenization Paths#
This section explains how the dataset formats and tokenizes samples.
ColumnMappedTextInstructionDataset produces standard next-token training tensors:
input_idslabelsattention_mask
When answer_only_loss_mask=True, prompt tokens are masked in labels with -100 (the standard CrossEntropy ignore_index).
The dataset supports two formatting paths:
Chat-template path (opt-in): if
use_hf_chat_template=Trueand the tokenizer exposes achat_templateandapply_chat_template, the dataset builds messages like:[{"role": "system", "content": <context or "">}, {"role": "user", "content": <question or "">}, {"role": "assistant", "content": <answer>}]and tokenizes them via
tokenizer.apply_chat_template(..., tokenize=True, return_dict=True).Plain prompt/completion path (default): otherwise the dataset concatenates prompt and answer and tokenizes the result.
In both cases, labels are the next-token targets (shifted by one relative to input_ids). The dataset also includes an internal ___PAD_TOKEN_IDS___ field used downstream for padding.
Parameter Requirements#
The following section lists important requirements and caveats for correct usage.
column_mappingmust includeanswer, and must include at least one ofcontextorquestion(2- or 3-column mapping only).If
use_hf_chat_template=True, the tokenizer must support chat templates (chat_template+apply_chat_template).
Slurm Configuration for Distributed Training#
For distributed training on Slurm clusters, add a slurm section to your YAML configuration. This section configures the Slurm batch job parameters and automatically generates the appropriate #SBATCH directives.
Basic Slurm Configuration#
Add the following section to your YAML configuration:
# Your existing model, dataset, training config...
step_scheduler:
grad_acc_steps: 4
num_epochs: 1
model:
_target_: nemo_automodel.NeMoAutoModelForCausalLM.from_pretrained
pretrained_model_name_or_path: meta-llama/Llama-3.2-1B
dataset:
_target_: nemo_automodel.components.datasets.llm.column_mapped_text_instruction_dataset.ColumnMappedTextInstructionDataset
path_or_dataset_id: Muennighoff/natural-instructions
column_mapping:
context: definition
question: inputs
answer: targets
# Add Slurm configuration
slurm:
job_name: llm-finetune
nodes: 1
ntasks_per_node: 8
time: 00:30:00
account: your_account
partition: gpu
container_image: nvcr.io/nvidia/nemo-automodel:25.11.00
gpus_per_node: 8
Multi-Node Slurm Configuration#
Note
Multi-Node Training: When using Hugging Face datasets in multi-node setups, you need shared storage accessible by all nodes. Set the HF_DATASETS_CACHE environment variable to point to a shared directory (e.g., HF_DATASETS_CACHE=/shared/hf_cache) in the YAML file as shown, to ensure all nodes can access the cached datasets.
When using multiple nodes with Hugging Face datasets:
Shared Storage: Ensure all nodes can access the same storage paths
HF Cache: Set
hf_hometo a shared directory accessible by all nodesEnvironment Variables: Use
env_varsto setHF_DATASETS_CACHEto the shared location
slurm:
job_name: llm-finetune-multi-node # name of the slurm job
nodes: 4 # number of nodes to use
ntasks_per_node: 8 # Number of tasks per node (typically equals number of GPUs)
time: 02:00:00 # Maximum job runtime (format: `HH:MM:SS`)
account: your_account # Slurm account to charge resources to
partition: gpu # Slurm partition to submit to
container_image: nvcr.io/nvidia/nemo-automodel:25.11.00 # Container image to use for the job
gpus_per_node: 8 # Number of GPUs per node (adds `#SBATCH --gpus-per-node=N`)
# Optional: Add extra mount points if needed
extra_mounts: # Additional mount points for the container
- /lustre:/lustre
- /shared:/shared
# Optional: Specify custom HF_HOME location
hf_home: /shared/hf_cache # Custom Hugging Face cache directory on shared disk space.
# Optional: Specify custom env vars
env_vars: # Additional environment variables
HF_DATASETS_CACHE: /shared/hf_cache # Similar to hf_home; useful when you use a different directory for datasets.
# Optional: Specify custom job directory
job_dir: /path/to/slurm/jobs
That’s It!#
With the mapping specified, the rest of the NeMo Automodel pipeline (pre-tokenization, packing, collate-fn, etc.) works as usual.