Use the ColumnMappedTextInstructionDataset#

This guide explains how to use ColumnMappedTextInstructionDataset to quickly and flexibly load instruction-answer datasets for LLM fine-tuning, with minimal code changes and support for various data formats and tokenization strategies.

The ColumnMappedTextInstructionDataset is a lightweight, plug-and-play helper that lets you train on instruction–answer style corpora without writing custom Python for every new schema. You simply specify which columns map to logical fields like context, question, and answer, and the loader handles the rest automatically. This enables:

  • Quick prototyping across diverse instruction datasets

  • Schema flexibility without needing codebase changes

  • Consistent field names for training loops, regardless of dataset source

It supports two data sources out-of-the-box and optionally streams them so they never fully reside in memory:

  1. Local JSON/JSONL files - pass a single file path or a list of paths on disk. The newline-delimited JSON works great.

  2. Hugging Face Hub - point to any dataset repo (org/dataset) that contains the required columns.


Quickstart#

The fastest way to sanity-check the loader is to point it at an existing Hugging Face dataset and print the first sample. This section provides a minimal, runnable example to help you quickly try out the dataset.

from transformers import AutoTokenizer
from nemo_automodel.components.datasets.llm.column_mapped_text_instruction_dataset import ColumnMappedTextInstructionDataset

tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")

ds = ColumnMappedTextInstructionDataset(
    path_or_dataset_id="Muennighoff/natural-instructions",
    column_mapping={"instruction": "definition", "question": "inputs", "answer": "targets"},
    tokenizer=tokenizer,
    streaming=True,
    answer_only_loss_mask=False,
)

print(next(iter(ds)))

# The above command will print:
# {
#   'input_ids': [128000, 12465, 425, 25, 578, 38413, 61941, ... 78863, 36373, 7217],
#   'labels':    [12465, 425, 25, 578, 38413, 61941, ..., 78863, 36373, 7217, 30],
#   'loss_mask': [1, 1, 1, 1, ..., 1, 1, 1, 1]
# }

# if you disable streaming (i.e., pass `streaming=False`), then you can inspect samples with
# print(ds[0])
# or inspect the length of the dataset
# print(len(ds))

The code above is intended only for a quick sanity check of the dataset and its tokenization output. For training or production use, configure the dataset using YAML as shown below. YAML offers a reproducible, maintainable, and scalable way to specify dataset and tokenization settings.


Usage Examples#

This section provides practical usage examples, including how to load remote datasets, work with local files, and configure pipelines using YAML recipes.

Local JSONL Example#

Assume you have a local newline-delimited JSON file at /data/my_corpus.jsonl with the simple schema {instruction, output}. A few sample rows:

{"instruction": "Translate 'Hello' to French", "output": "Bonjour"}
{"instruction": "Summarize the planet Neptune.", "output": "Neptune is the eighth planet from the Sun."}

You can load it using python code like:

local_ds = ColumnMappedTextInstructionDataset(
    path_or_dataset_id=["/data/my_corpus_1.jsonl", "/data/my_corpus_2.jsonl"]  # can also be a single path (string)
    column_mapping={
        "question": "instruction",
        "answer": "output",
    },
    tokenizer=tokenizer,
    answer_only_loss_mask=False,  # compute loss over full sequence
)

print(remote_ds[0].keys())  # {'context', 'question', 'answer'}
print(local_ds[0].keys())   # {'question', 'answer'}

You can configure the dataset entirely from your recipe YAML. For example:

dataset:
  _target_: nemo_automodel.components.datasets.llm.column_mapped_text_instruction_dataset.ColumnMappedTextInstructionDataset
  path_or_dataset_id: 
    - /data/my_corpus_1.jsonl
    - /data/my_corpus_2.jsonl
  column_mapping:
    question: instruction
    answer: output
  answer_only_loss_mask: false

Remote Dataset Example#

In the following section, we demonstrate how to load the instruction-tuning corpus Muennighoff/natural-instructions. The dataset schema is {task_name, id, definition, inputs, targets}.

The following are examples from the training split:

{
  "task_name": "task001_quoref_question_generation",
  "id": "task001-abc123",
  "definition": "In this task, you're given passages that...",
  "inputs": "Passage: A man is sitting at a piano...",
  "targets": "What is the first name of the person who doubted it would be explosive?"
}
{
  "task_name": "task002_math_word_problems",
  "id": "task002-def456",
  "definition": "Solve the following word problem.",
  "inputs": "If there are 3 apples and you take 2...",
  "targets": "1"
}

For basic QA fine-tuning, we usually map definition instruction, inputs question, and targets answer as follows:

from nemo_automodel.components.datasets.llm.column_mapped_text_instruction_dataset import (
    ColumnMappedTextInstructionDataset,
)
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")

remote_ds = ColumnMappedTextInstructionDataset(
    path_or_dataset_id="Muennighoff/natural-instructions",  # Hugging Face repo ID
    column_mapping={
        "instruction": "definition",  # high-level instruction
        "question": "inputs",         # the actual prompt / input
        "answer": "targets",          # expected answer string
    },
    tokenizer=tokenizer,
    split="train[:5%]",        # demo slice; omit (i.e. `split="train",`) for full data
    answer_only_loss_mask=True,
    start_of_turn_token="<|assistant|>",
    streaming=True,              # <── stream instead of download whole dataset
)

You can configure the entire dataset directly from your recipe YAML. For example:

# dataset section of your recipe's config.yaml
dataset:
  _target_: nemo_automodel.components.datasets.llm.column_mapped_text_instruction_dataset.ColumnMappedTextInstructionDataset
  path_or_dataset_id: Muennighoff/natural-instructions
  split: train
  column_mapping:
    context: context
    question: question
    answer: answer
  answer_only_loss_mask: true
  start_of_turn_token: "<|assistant|>"

Advanced Options#

Arg

Default

Description

split

None

Which split to pull from a HF repo (train, validation, etc.). Ignored for local files.

streaming

False

If True, loads the dataset in streaming mode (an HF IterableDataset). Useful for very large corpora or when you want to start training before the full download completes. When enabled, len(...) and random access (dataset[idx]) are not available — iterate instead.

answer_only_loss_mask

True

Create a loss_mask where only the answer tokens contribute to the loss. Requires start_of_turn_token.

start_of_turn_token

None

String token marking the assistant’s response. Required when answer_only_loss_mask=True for tokenizers with chat template.


Tokenisation Paths#

This section explains how the dataset tokenizes both inputs and outputs, and how it adapts to different tokenizers. ColumnMappedTextInstructionDataset automatically picks one of two tokenization strategies depending on the capabilities of the provided tokenizer:

  1. Chat-template path: if the tokenizer exposes a chat_template attribute and an apply_chat_template method, the dataset will:

    • build a list of messages in the form [{"role": "user", "content": <prompt>}, {"role": "assistant", "content": <answer>}],

    • call tokenizer.apply_chat_template(messages) to convert them to input_ids,

    • derive labels by shifting input_ids one position to the right, and

    • compute loss_mask by locating the second occurrence of start_of_turn_token (this marks the assistant response boundary). All tokens that belong to the user prompt are set to 0, while the answer tokens are 1.

  2. Plain prompt/completion path: if the tokenizer has no chat template, the dataset falls back to a classic prompt and answer concatenation:

    "<context> <question> " + "<answer>"
    

    The helper strips any trailing eos from the prompt and leading bos from the answer so that the two halves join cleanly.

Regardless of the path, the output dict is always:

{
    "input_ids": [...],  # one token shorter than the full sequence
    "labels":     [...], # next-token targets
    "loss_mask":  [...], # 1 for tokens contributing to the loss
}

Parameter Requirements#

The following section lists important requirements and caveats for correct usage.

  • answer_only_loss_mask=True requires a start_of_turn_token string that exists in the tokenizer’s vocabulary and can be successfully encoded when the helper performs a lookup. Otherwise, a ValueError is raised at instantiation time.

  • Each sample must include at least one of context or question; omitting both will result in a ValueError.


That’s It!#

With the mapping specified, the rest of the NeMo Automodel pipeline (pre-tokenisation, packing, collate-fn, etc.) works as usual.