RDG for DPF Zero-Trust Multi-DPU: DPU1 with HBN and DPU2 with DTS/Blueman services

Created on Jan 06, 2026

Scope

This Reference Deployment Guide (RDG) provides comprehensive instructions for deploying the NVIDIA DOCA Platform Framework (DPF) on high-performance, bare-metal infrastructure in Zero-Trust mode . The guide focuses on setting up an accelerated Host-Based Networking (HBN) service on NVIDIA® BlueField®-3 DPUs to deliver secure, isolated, and hardware-accelerated environments. The guide also covers deploying the DOCA Telemetry Service (DTS) and BlueMan Service on additional workload NVIDIA® BlueField®-3 DPUs, enabling a unified interface to accessing essential DPU information, health status, and telemetry metrics.

The guide is intended for experienced system administrators, systems engineers, and solution architects who build highly secure bare-metal environments with Host-Based Networking enabled using NVIDIA BlueField DPUs for acceleration, isolation, and infrastructure offload.

This document is an extension of the RDG for DPF Zero Trust (DPF-ZT) - NVIDIA Docs (referred to as the Baseline RDG ). It details the additional steps and modifications required to deploy the HBN, DTS, and BlueMan Services into the Baseline RDG environment.

Note
  • This reference implementation, as the name implies, is a specific, opinionated deployment example designed to address the use case described above.

  • Although other approaches may exist for implementing similar solutions, this document provides a detailed guide for this specific method.

Abbreviations and Acronyms

Term

Definition

Term

Definition

BFB

BlueField Bootstream

NFS

Network File System

BGP

Border Gateway Protocol

OOB

Out-of-Band

DOCA

Data Center Infrastructure-on-a-Chip Architecture

PF

Physical Function

DPF

DOCA Platform Framework

RDG

Reference Deployment Guide

DPU

Data Processing Unit

RDMA

Remote Direct Memory Access

DTS

DOCA Telemetry Service

RoCE

RDMA over Converged Ethernet

HBN

Host Based Networking

SFC

Service Function Chaining

IPAM

IP Address Management

SR-IOV

Single Root Input/Output Virtualization

K8S

Kubernetes

VLAN

Virtual LAN (Local Area Network)

KVM

Kernel-based Virtual Machine

VNI

Virtual Network Interface

MAAS

Metal as a Service

VRF

Virtual Router/Forwarder

MTU

Maximum Transmission Unit

ZT

Zero Trust

NGC

NVIDIA GPU Cloud

Introduction

The NVIDIA BlueField-3 Data Processing Unit (DPU) is a 400 Gb/s infrastructure compute platform designed for line-rate processing of software-defined networking, storage, and cybersecurity workloads. It combines powerful compute resources, high-speed networking, and advanced programmability to deliver hardware-accelerated, software-defined solutions for modern data centers.

NVIDIA DOCA unleashes the full potential of the BlueField platform by enabling rapid development of applications and services that offload, accelerate, and isolate data center workloads.

One such service is Host-Based Networking (HBN) - a DOCA-enabled solution that allows network architects to design networks based on Layer 3 (L3) protocols. HBN enables routing on the server side by using BlueField as a BGP router. It encapsulates key networking functions in a containerized service pod, deployed directly on the BlueField’s Arm cores.

DOCA Telemetry Service (DTS) collects data from built-in providers (data providers such as sysfs , ethtool and tc , and aggregation providers such as fluent_aggr and prometheus_aggr ), and from external telemetry applications.

DOCA BlueMan runs in the DPU as a standalone web dashboard and consolidates all the basic information, health, and telemetry counters into a single interface.

All the information that BlueMan provides is gathered from the DOCA Telemetry Service (DTS).

However, deploying and managing DPUs and their associated DOCA services, especially at scale, presents operational challenges. Without a robust provisioning and orchestration system, tasks such as lifecycle management, service deployment, and network configuration for service function chaining (SFC) can quickly become complex and error prone. This is where the DOCA Platform Framework (DPF) comes into play.

DPF automates the full DPU lifecycle, streamlines the deployment of DOCA services, and simplifies advanced network configurations. With DPF, services such as HBN can be deployed seamlessly, allowing for efficient offloading and intelligent routing of traffic through the DPU data plane.

By leveraging DPF, users can scale and automate DPU management across Bare Metal, Virtual, and Kubernetes customer environments - optimizing performance while simplifying operations.

DPF supports multiple deployment models. This guide focuses on the Zero Trust bare-metal deployment model. In this scenario:

  • The DPU is managed through its Baseboard Management Controller (BMC)
  • All management traffic occurs over the DPU's out-of-band (OOB) network
  • The host is considered as an untrusted entity towards the data center network. The DPU acts as a barrier between the host and the network.
  • The host sees the DPU as a standard NIC, with no access to the internal DPU management plane (Zero Trust Mode)

This Reference Deployment Guide (RDG) provides a step-by-step example for installing DPF in Zero-Trust mode and HBN. It also includes practical demonstrations of performance optimization, validated using standard RDMA and TCP workloads.

As part of the reference implementation, open-source components outside the scope of DPF (e.g., MAAS, pfSense, Kubespray) are used to simulate a realistic customer deployment environment. The guide includes the full end-to-end deployment process, including:

  • Infrastructure provisioning
  • DPF deployment
  • DPU provisioning (redfish)
  • Service configuration and deployment
  • Service chaining.

This document extends the capabilities of the DPF-managed Kubernetes cluster described in the RDG for DPF Zero Trust (DPF-ZT) - NVIDIA Docs (referred to as the Baseline RDG) by deploying the NVIDIA DOCA HBN, DTS and BlueMan Services within the existing DPF deployment to achieve a comprehensive, accelerated infrastructure.

References

    Solution Architecture

    Key Components and Technologies

    • NVIDIA BlueField® Data Processing Unit (DPU)

      The NVIDIA® BlueField® data processing unit (DPU) ignites unprecedented innovation for modern data centers and supercomputing clusters. With its robust compute power and integrated software-defined hardware accelerators for networking, storage, and security, BlueField creates a secure and accelerated infrastructure for any workload in any environment, ushering in a new era of accelerated computing and AI.

    • NVIDIA DOCA Software Framework

      NVIDIA DOCA™ unlocks the potential of the NVIDIA® BlueField® networking platform. By harnessing the power of BlueField DPUs and SuperNICs, DOCA enables the rapid creation of applications and services that offload, accelerate, and isolate data center workloads. It lets developers create software-defined, cloud-native, DPU- and SuperNIC-accelerated services with zero-trust protection, addressing the performance and security demands of modern data centers.

    • NVIDIA ConnectX SmartNICs

      10/25/40/50/100/200 and 400G Ethernet Network Adapters

      The industry-leading NVIDIA® ConnectX® family of smart network interface cards (SmartNICs) offer advanced hardware offloads and accelerations.

      NVIDIA Ethernet adapters enable the highest ROI and lowest Total Cost of Ownership for hyperscale, public and private clouds, storage, machine learning, AI, big data, and telco platforms.

    • NVIDIA LinkX Cables

      The NVIDIA® LinkX® product family of cables and transceivers provides the industry’s most complete line of 10, 25, 40, 50, 100, 200, and 400GbE in Ethernet and 100, 200 and 400Gb/s InfiniBand products for Cloud, HPC, hyperscale, Enterprise, telco, storage and artificial intelligence, data center applications.

    • NVIDIA Spectrum Ethernet Switches

      Flexible form-factors with 16 to 128 physical ports, supporting 1GbE through 400GbE speeds.

      Based on a ground-breaking silicon technology optimized for performance and scalability, NVIDIA Spectrum switches are ideal for building high-performance, cost-effective, and efficient Cloud Data Center Networks, Ethernet Storage Fabric, and Deep Learning Interconnects.

      NVIDIA combines the benefits of NVIDIA Spectrum switches, based on an industry-leading application-specific integrated circuit (ASIC) technology, with a wide variety of modern network operating system choices, including NVIDIA Cumulus® Linux , SONiC and NVIDIA Onyx®.

    • NVIDIA Cumulus Linux

      NVIDIA® Cumulus® Linux is the industry's most innovative open network operating system that allows you to automate, customize, and scale your data center network like no other.

    • Kubernetes

      Kubernetes is an open-source container orchestration platform for deployment automation, scaling, and management of containerized applications.

    • Kubespray

      Kubespray is a composition of Ansible playbooks, inventory, provisioning tools, and domain knowledge for generic OS/Kubernetes clusters configuration management tasks and provides:

      • A highly available cluster
      • Composable attributes
      • Support for most popular Linux distributions

    Solution Design

    Solution Logical Design

    The logical design includes the following components:

    • 1 x Hypervisor node (KVM-based) with ConnectX-7:

      • 1 x Firewall VM
      • 1 x Jump Node VM
      • 1 x MaaS VM
      • 3 x K8s Master VMs running all K8s management components
    • 4 x Worker nodes (PCI Gen5), each with 2 x BlueField-3 NIC
    • Single High-Speed (HS) switch
    • 1 Gb Host Management network

    image-2026-1-6_10-26-46-version-1-modificationdate-1767688006543-api-v2.png

    HBN service Logical Design

    As part of this RDG, we will:

    • Create two fully isolated logical networks per bare-metal workload server using a single physical function (PF0).

      • Connect each network through the HBN service to a dedicated VLAN/VNI, mapped to separate VRFs ( RED or BLUE ).
    • Route all workload traffic through the HBN service, with routing and isolation enforced inside the DPU.
    • Assign PF0 as the sole network interface for each bare-metal workload server, with no networking configuration on the host.
    • Demonstrate accelerated RDMA and TCP traffic between workload servers running on different bare-metal hosts within the same network (for example, RED RED ).
    • Validate strict network isolation by confirming that traffic between workloads in different networks ( RED vs BLUE ) is not permitted.
    image-2025-12-30_15-39-37-version-1-modificationdate-1767101977550-api-v2.png

    Firewall Design

    The pfSense firewall in this solution serves a dual purpose:

    • Firewall—provides an isolated environment for the DPF system, ensuring secure operations
    • Router—enables Internet access for the management network

    Port-forwarding rules for SSH and RDP are configured on the firewall to route traffic to the jump node’s IP address in the host management network. From the jump node, administrators can manage and access various devices in the setup, as well as handle the deployment of the Kubernetes (K8s) cluster and DPF components.
    The following diagram illustrates the firewall design used in this solution:

    image-2025-5-7_10-44-2-1-version-1-modificationdate-1763027375883-api-v2.png

    Software Stack Components

    image-2025-12-30_15-41-52-1-version-1-modificationdate-1767102112500-api-v2.png

    Warning

    Make sure to use the exact same versions for the software stack as described above.

    Bill of Materials

    image-2026-1-6_10-50-13-1-version-1-modificationdate-1767689413970-api-v2.png

    Deployment and Configuration

    Node and Switch Definitions

    These are the definitions and parameters used for deploying the demonstrated fabric:

    Switches Ports Usage

    Hostname

    Rack ID

    Ports

    mgmt-switch

    1

    swp1-3

    hs-switch

    1

    swp1-17

    Hosts

    Rack

    Server Type

    Server Name

    Switch Port

    IP and NICs

    Default Gateway

    Rack1

    Hypervisor Node

    hypervisor

    mgmt-switch: swp1

    hs-switch: swp1

    lab-br (interface eno1): Trusted LAN IP

    mgmt-br (interface eno2): -

    hs-br (interface enp1s0): -

    Trusted LAN GW

    Rack1

    Firewall (Virtual)

    fw

    -

    WAN (lab-br): Trusted LAN IP

    LAN (mgmt-br): 10.0.110.254/24

    OPT1(hs-br): 10.0.123.254/22

    Trusted LAN GW

    Rack1

    Jump Node (Virtual)

    jump

    -

    enp1s0: 10.0.110.253/24

    10.0.110.254

    Rack1

    MaaS (Virtual)

    maas

    -

    enp1s0: 10.0.110.252/24

    10.0.110.254

    Rack1

    Master Node

    (Virtual)

    master1

    -

    enp1s0: 10.0.110.1/24

    10.0.110.254

    Rack1

    Master Node

    (Virtual)

    master2

    -

    enp1s0: 10.0.110.2/24

    10.0.110.254

    Rack1

    Master Node

    (Virtual)

    master3

    -

    enp1s0: 10.0.110.3/24

    10.0.110.254

    Rack1

    Worker Node

    worker1

    mgmt-switch: swp2(DPU OOB)

    hs-switch: swp2-swp3-swp4-swp5

    dpubmc: 10.0.110.21/24

    ens1f0np0/ens1f1np1: 10.0.120.0/22

    10.0.110.254

    Rack1

    Worker Node

    worker2

    mgmt-switch: swp3(DPU OOB)

    hs-switch: swp6-swp7-swp8-swp9

    dpubmc: 10.0.110.22/24

    ens1f0np0/ens1f1np1: 10.0.120.0/22

    10.0.110.254

    Rack1

    Worker Node

    worker3

    mgmt-switch: swp2(DPU OOB)

    hs-switch: swp10-swp11-swp12-swp13

    dpubmc: 10.0.110.23/24

    ens1f0np0/ens1f1np1: 10.0.120.0/22

    10.0.110.254

    Rack1

    Worker Node

    worker4

    mgmt-switch: swp3(DPU OOB)

    hs-switch: swp14-swp15-swp16-swp17

    dpubmc: 10.0.110.24/24

    ens1f0np0/ens1f1np1: 10.0.120.0/22

    10.0.110.254

    Wiring

    Hypervisor Node

    image-2025-6-3_11-34-50-version-1-modificationdate-1763027385147-api-v2.png

    Bare Metal Worker Node

    image-2025-11-16_11-59-8-1-version-1-modificationdate-1763287148847-api-v2.png

    Fabric Configuration

    Updating Cumulus Linux

    As a best practice, make sure to use the latest released Cumulus Linux NOS version.

    For information on how to upgrade Cumulus Linux, refer to the Cumulus Linux User Guide.

    Configuring the Cumulus Linux Switch

    The SN3700 switch (hs-switch), is configured as follows:

    SN3700 Switch Console

    Copy
    Copied!
                

    nv set evpn state enable nv set interface eth0 ip address dhcp nv set interface eth0 ip vrf mgmt nv set interface eth0 type eth nv set interface lo ipv4 address 11.0.0.101/32 nv set interface lo type loopback nv set interface swp1-17 link state up nv set interface swp1-17 type swp nv set interface swp1 ipv4 address 10.0.123.253/22 nv set router bgp autonomous-system 65001 nv set router bgp state enabled nv set router bgp graceful-restart mode full nv set router bgp router-id 11.0.0.101 nv set vrf default router bgp address-family ipv4-unicast state enabled nv set vrf default router bgp address-family ipv4-unicast redistribute connected state enabled nv set vrf default router bgp address-family ipv4-unicast redistribute static state enabled nv set vrf default router bgp address-family ipv6-unicast state enabled nv set vrf default router bgp address-family ipv6-unicast redistribute connected state enabled nv set vrf default router bgp address-family l2vpn-evpn state enabled nv set vrf default router bgp state enabled nv set vrf default router bgp neighbor swp2 peer-group hbn nv set vrf default router bgp neighbor swp2 type unnumbered nv set vrf default router bgp neighbor swp3 peer-group hbn nv set vrf default router bgp neighbor swp3 type unnumbered nv set vrf default router bgp neighbor swp4 peer-group hbn nv set vrf default router bgp neighbor swp4 type unnumbered nv set vrf default router bgp neighbor swp5 peer-group hbn nv set vrf default router bgp neighbor swp5 type unnumbered nv set vrf default router bgp neighbor swp6 peer-group hbn nv set vrf default router bgp neighbor swp6 type unnumbered nv set vrf default router bgp neighbor swp7 peer-group hbn nv set vrf default router bgp neighbor swp7 type unnumbered nv set vrf default router bgp neighbor swp8 peer-group hbn nv set vrf default router bgp neighbor swp8 type unnumbered nv set vrf default router bgp neighbor swp9 peer-group hbn nv set vrf default router bgp neighbor swp9 type unnumbered nv set vrf default router bgp neighbor swp10 peer-group hbn nv set vrf default router bgp neighbor swp10 type unnumbered nv set vrf default router bgp neighbor swp11 peer-group hbn nv set vrf default router bgp neighbor swp11 type unnumbered nv set vrf default router bgp neighbor swp12 peer-group hbn nv set vrf default router bgp neighbor swp12 type unnumbered nv set vrf default router bgp neighbor swp13 peer-group hbn nv set vrf default router bgp neighbor swp13 type unnumbered nv set vrf default router bgp neighbor swp14 peer-group hbn nv set vrf default router bgp neighbor swp14 type unnumbered nv set vrf default router bgp neighbor swp15 peer-group hbn nv set vrf default router bgp neighbor swp15 type unnumbered nv set vrf default router bgp neighbor swp16 peer-group hbn nv set vrf default router bgp neighbor swp16 type unnumbered nv set vrf default router bgp neighbor swp17 peer-group hbn nv set vrf default router bgp neighbor swp17 type unnumbered nv set vrf default router bgp path-selection multipath aspath-ignore enabled nv set vrf default router bgp peer-group hbn address-family l2vpn-evpn state enabled nv set vrf default router bgp peer-group hbn remote-as external nv set vrf default router static 0.0.0.0/0 address-family ipv4-unicast nv set vrf default router static 0.0.0.0/0 via 10.0.123.254 type ipv4-address nv config apply -y nv config save

    The SN2201 switch (mgmt-switch) is configured as follows:

    SN2201 Switch Console

    Copy
    Copied!
                

    nv set interface swp1-3 link state up nv set interface swp1-3 type swp nv set interface swp1-3 bridge domain br_default nv set bridge domain br_default untagged 1 nv config apply nv config save -y

    Host Configuration

    Warning

    Make sure that the BIOS settings on the worker node servers have SR-IOV enabled and that the servers are tuned for maximum performance.

    All worker nodes must have the same PCIe placement for the BlueField-3 NIC and must display the same interface name.

    Make sure that you have DPU BMC and OOB MAC addresses.

    No change from the Reference Deployment Guide (Baseline RDG) (Section "Deployment and Configuration", Subsection " Host Configuration ").

    Hypervisor Installation and Configuration

    No change from the Baseline RDG (Section "Deployment and Configuration", Subsection "Hypervisor Installation and Configuration").

    Prepare Infrastructure Servers

    No change from the Baseline RDG (Section "Deployment and Configuration", Subsection "Prepare Infrastructure Servers") regarding Firewall VM, Jump VM, MaaS VM.

    (Optional) Firewall VM – Bare Metal Server Outside Conection

    To provide outside connection from Bare Metal Host via High Speed network, open Firefox web browser and go to the pfSense web UI (http://10.0.110.254).

    • System:

      • Routing → Gateways → Add → “Interface”: OPT1, “Address Family”: IPv4, “Name”: switch, “Gateway”: 10.0.123.253 → Click "Save"→ Under "Default Gateway" - "Default gateway IPv4" choose WAN_DHCP → Click "Save"

        image-2025-9-10_16-27-37-version-1-modificationdate-1763027346407-api-v2.png

        Note

        Note that the IP addresses from the Trusted LAN network under "Gateway" and "Monitor IP" are blurred.

        image-2025-9-10_16-30-18-version-1-modificationdate-1763027346067-api-v2.png

    Provision Master VMs Using MaaS

    No change from the Baseline RDG (Section "Deployment and Configuration", Subsection "Provision Master VMs Using MaaS").

    K8s Cluster Deployment and Configuration

    The procedures for initial Kubernetes cluster deployment using Kubespray for the master nodes, and subsequent verification, remain unchanged from the Baseline RDG (Section "K8s Cluster Deployment and Configuration", Subsections: "Kubespray Deployment and Configuration", "Deploying Cluster Using Kubespray Ansible Playbook","K8s Deployment Verification".

    DPF Installation

    The DPF installation process (Operator, System components) largely follows the Baseline RDG.

    Software Prerequisites and Required Variables

    1. Start by installing the remaining software perquisites.

      Jump Node Console

      Copy
      Copied!
                  

      ## Connect to master1 to copy helm client utility that was installed during kubespray deployment $ depuser@jump:~$ ssh master1 depuser@master1:~$ cp /usr/local/bin/helm /tmp/   ## In another tab depuser@jump:~$ scp master1:/tmp/helm /tmp/ depuser@jump:~$ sudo chown root:root /tmp/helm depuser@jump:~$ sudo mv /tmp/helm /usr/local/bin/   ## Verify that envsubst utility is installed depuser@jump:~$ which envsubst /usr/bin/envsubst

    2. Proceed to clone the doca-platform Git repository:

      Jump Node Console

      Copy
      Copied!
                  

      $ git clone https://github.com/NVIDIA/doca-platform.git

    3. Change directory to doca-platform and checkout to tag v25.10.0:

      Jump Node Console

      Copy
      Copied!
                  

      $ cd doca-platform/ $ git checkout v25.10.0

    4. Change directory to readme.md from where all the commands will be run:

      Jump Node Console

      Copy
      Copied!
                  

      $ cd doca-platform/docs/public/user-guides/zero-trust/use-cases/hbn

    5. Modify the variables in manifests/00-env-vars/envvars.env to fit your environment, then source the file:

      Warning

      Replace the values for the variables in the following file with the values that fit your setup. Specifically, pay attention to DPUCLUSTER_INTERFACE, BMC_ROOT_PASSWORD, and DPU's serial number.

      To get a DPU's serial number you can use following command. Sample:

      $ curl -k -u root:'BMC root password' https://10.0.110.201/redfish/v1/Systems/Bluefield | jq -r '.SerialNumber | ascii_downcase'

      % Total % Received % Xferd Average Speed Time Time Time Current

      Dload Upload Total Spent Left Speed

      100 4970 100 4970 0 0 4211 0 0:00:01 0:00:01 --:--:-- 4211

      mt2402xz0f7x

      manifests/00-env-vars/envvars.env

      Copy
      Copied!
                  

      ## IP Address for the Kubernetes API server of the target cluster on which DPF is installed. ## This should never include a scheme or a port. ## e.g. 10.10.10.10 export TARGETCLUSTER_API_SERVER_HOST=10.0.110.10   ## Virtual IP used by the load balancer for the DPU Cluster. Must be a reserved IP from the management subnet and not ## allocated by DHCP. export DPUCLUSTER_VIP=10.0.110.200   ## Interface on which the DPUCluster load balancer will listen. Should be the management interface of the control plane node. export DPUCLUSTER_INTERFACE=ens160   ## IP address to the NFS server used as storage for the BFB. export NFS_SERVER_IP=10.0.110.253   ## The repository URL for the NVIDIA Helm chart registry. ## Usually this is the NVIDIA Helm NGC registry. For development purposes, this can be set to a different repository. export HELM_REGISTRY_REPO_URL=https://helm.ngc.nvidia.com/nvidia/doca   ## The repository URL for the HBN container image. ## Usually this is the NVIDIA NGC registry. For development purposes, this can be set to a different repository. export HBN_NGC_IMAGE_URL=nvcr.io/nvidia/doca/doca_hbn   ## The DPF REGISTRY is the Helm repository URL where the DPF Operator Chart resides. ## Usually this is the NVIDIA Helm NGC registry. For development purposes, this can be set to a different repository. export REGISTRY=https://helm.ngc.nvidia.com/nvidia/doca ## The DPF TAG is the version of the DPF components which will be deployed in this guide. export TAG=v25.10.0 ## URL to the BFB used in the `bfb.yaml` and linked by the DPUSet. export BFB_URL="https://content.mellanox.com/BlueField/BFBs/Ubuntu24.04/bf-bundle-3.2.1-34_25.11_ubuntu-24.04_64k_prod.bfb"   ## IP_RANGE_START and IP_RANGE_END ## These define the IP range for DPU discovery via Redfish/BMC interfaces ## Example: If your DPUs have BMC IPs in range 10.0.110.201-240 ## export IP_RANGE_START=10.0.110.201 ## export IP_RANGE_END=10.0.110.240   ## Start of DPUDiscovery IpRange export IP_RANGE_START=10.0.110.201   ## End of DPUDiscovery IpRange export IP_RANGE_END=10.0.110.208   # The password used for DPU BMC root login, must be the same for all DPUs # For more information on how to set the BMC root password refer to BlueField DPU Administrator Quick Start Guide. export BMC_ROOT_PASSWORD=<set your BMC_ROOT_PASSWORD>   ## Serial number of DPUs. If you have more than 2 DPUs, you will need to parameterize the system accordingly and expose ## additional variables. ## All serial numbers must be in lowercase.   ## Serial number of DPU1 export DPU1_SERIAL=mt2402xz0f7x   ## Serial number of DPU2 export DPU2_SERIAL=mt2402xz0f80   ## Serial number of DPU3 export DPU2_SERIAL=mt2402xz0f9n   ## Serial number of DPU4 export DPU2_SERIAL=mt2402xz0f8g

    6. Export environment variables for the installation:

      Jump Node Console

      Copy
      Copied!
                  

      $ source manifests/00-env-vars/envvars.env

    DPF Operator Installation

    DPF System Installation

    No change from the Baseline RDG (Section "DPF Installation", Subsection "DPF System Installation").

    DPU Services Installation

    HBN DPU Service Installation

    This section focuses on provisioning NVIDIA®BlueField®-3 DPUs using DPF, installing the HBN DPU Service on those DPUs and enabling workload traffic to pass through HBN before leaving the DPU.

    1. Export environment variables for the installation:

      Jump Node Console

      Copy
      Copied!
                  

      $ source manifests/00-env-vars/envvars.env

    2. Use the following YAML to define a BFB resource that downloads the Bluefield Bitstream to a shared volume:

      manifests/03.1-dpudeployment-installation-pf/bfb.yaml

      Copy
      Copied!
                  

      --- apiVersion: provisioning.dpu.nvidia.com/v1alpha1 kind: BFB metadata: name: bf-bundle-$TAG   namespace: dpf-operator-system spec: url: $BFB_URL

    3. Change the DPUFlavor using the following YAML:

      Note

      The settings below configure a DPU in Zero Trust mode, which means DPU management will be blocked from the bare-metal host.

      To deploy in DPU mode, comment out the line containing dpuMode:

      # dpuMode: zero-trust

      manifests/03.1-dpudeployment-installation-pf/hbn-dpuflavor.yaml

      Copy
      Copied!
                  

      --- apiVersion: provisioning.dpu.nvidia.com/v1alpha1 kind: DPUFlavor metadata: name: hbn-$TAG   namespace: dpf-operator-system spec: dpuMode: zero-trust bfcfgParameters: - UPDATE_ATF_UEFI=yes - UPDATE_DPU_OS=yes - WITH_NIC_FW_UPDATE=yes configFiles: - operation: override path: /etc/mellanox/mlnx-bf.conf permissions: "0644" raw: | ALLOW_SHARED_RQ="no" IPSEC_FULL_OFFLOAD="no" ENABLE_ESWITCH_MULTIPORT="yes" - operation: override path: /etc/mellanox/mlnx-ovs.conf permissions: "0644" raw: | CREATE_OVS_BRIDGES="no" OVS_DOCA="yes" - operation: override path: /etc/mellanox/mlnx-sf.conf permissions: "0644" raw: "" grub: kernelParameters: - console=hvc0 - console=ttyAMA0 - earlycon=pl011,0x13010000 - fixrttc - net.ifnames=0 - biosdevname=0 - iommu.passthrough=1 - cgroup_no_v1=net_prio,net_cls - hugepagesz=2048kB - hugepages=3072 nvconfig: - device: '*' parameters: - PF_BAR2_ENABLE=0 - PER_PF_NUM_SF=1 - PF_TOTAL_SF=20 - PF_SF_BAR_SIZE=10 - NUM_PF_MSIX_VALID=0 - PF_NUM_PF_MSIX_VALID=1 - PF_NUM_PF_MSIX=228 - INTERNAL_CPU_MODEL=1 - INTERNAL_CPU_OFFLOAD_ENGINE=0 - SRIOV_EN=1 - NUM_OF_VFS=46 - LAG_RESOURCE_ALLOCATION=1 - LINK_TYPE_P1=ETH - LINK_TYPE_P2=ETH - EXP_ROM_UEFI_x86_ENABLE=1  ovs: rawConfigScript: | _ovs-vsctl() { ovs-vsctl --no-wait --timeout 15 "$@" }   _ovs-vsctl set Open_vSwitch . other_config:doca-init=true _ovs-vsctl set Open_vSwitch . other_config:dpdk-max-memzones=50000 _ovs-vsctl set Open_vSwitch . other_config:hw-offload=true _ovs-vsctl set Open_vSwitch . other_config:pmd-quiet-idle=true _ovs-vsctl set Open_vSwitch . other_config:max-idle=20000 _ovs-vsctl set Open_vSwitch . other_config:max-revalidator=5000 _ovs-vsctl --if-exists del-br ovsbr1 _ovs-vsctl --if-exists del-br ovsbr2 _ovs-vsctl --may-exist add-br br-sfc _ovs-vsctl set bridge br-sfc datapath_type=netdev _ovs-vsctl set bridge br-sfc fail_mode=secure _ovs-vsctl --may-exist add-port br-sfc p0 _ovs-vsctl set Interface p0 type=dpdk _ovs-vsctl set Interface p0 mtu_request=9216 _ovs-vsctl set Port p0 external_ids:dpf-type=physical _ovs-vsctl --may-exist add-port br-sfc p1 _ovs-vsctl set Interface p1 type=dpdk _ovs-vsctl set Interface p1 mtu_request=9216 _ovs-vsctl set Port p1 external_ids:dpf-type=physical _ovs-vsctl --may-exist add-br br-hbn _ovs-vsctl set bridge br-hbn datapath_type=netdev _ovs-vsctl set bridge br-hbn fail_mode=secure

    4. In multi-DPU configurations—where a single host worker node includes two or more NVIDIA® BlueField® DPUs—using a standard nodeSelector targets the host node rather than individual DPUs. As a result, all DPU-scoped services (HBN, DTS, BlueMan) are deployed onto every DPU on that node, which may lead to service conflicts and prevents proper role separation across DPUs.

      The dpuSelector mechanism provides fine-grained control over service placement by enabling operators to target specific DPUs directly. This approach improves resource allocation, enforces service isolation, and enables clean scalability in multi-DPU deployments.

      Using dpuSelector, you can:

      • Run the HBN service exclusively on the first DPU.
      • Deploy the DTS and BlueMan services on the second DPU.

      To target a specific DPU, apply labels to the corresponding DPUDevice object. The labeled device can then be referenced by dpuSelector.

      Below is an example (replace the serial number with the one from your environment):

      Jump Node Console

      Copy
      Copied!
                  

      $ kubectl label dpudevice -n dpf-operator-system mt2402xz0f7x mt2402xz0f80 mt2402xz0f9n mt2402xz0f8g provisioning.dpu.nvidia.com/dpudevice-service-name=hbn $ kubectl label dpudevice -n dpf-operator-system mt2511600rc3 mt2511600ruh mt2511600r8p mt2511600rp1 provisioning.dpu.nvidia.com/dpudevice-service-name=dts-blueman

    5. Change the dpudeployment.yaml file to reference the DPUFlavor suited for performance.

      manifests/03.1-dpudeployment-installation-pf/dpudeployment.yaml

      Copy
      Copied!
                  

      --- apiVersion: svc.dpu.nvidia.com/v1alpha1 kind: DPUDeployment metadata: name: hbn-only namespace: dpf-operator-system spec: dpus: bfb: bf-bundle-$TAG     flavor: hbn-$TAG     nodeEffect: noEffect: true     dpuSets: - nameSuffix: "dpuset1" nodeSelector: matchLabels: feature.node.kubernetes.io/dpu-enabled: "true" dpuSelector: provisioning.dpu.nvidia.com/dpudevice-service-name: hbn   services: doca-hbn: serviceTemplate: doca-hbn serviceConfiguration: doca-hbn serviceChains: switches: - ports: - serviceInterface: matchLabels: uplink: p0 - service: name: doca-hbn interface: p0_if - ports: - serviceInterface: matchLabels: uplink: p1 - service: name: doca-hbn interface: p1_if - ports: - serviceInterface: matchLabels: interface: pf0hpf         - service: interface: pf0hpf_if name: doca-hbn

    6. Change the rest of the configuration files.

      As explained in the introduction, these files create service chains that connect two physical functions PF0 or PF0 to the outer fabric through HBN, providing EVPN VXLAN overlay, VNI based isolation, and ECMP redundancy across both DPU uplinks (p0 and p1).

      These are the configuration files.

      • HBN DPUServiceConfig and DPUServiceTemplate to deploy HBN workloads to the DPUs.

        manifests/03.1-dpudeployment-installation-pf/hbn-dpuserviceconfig.yaml

        Copy
        Copied!
                    

        --- apiVersion: svc.dpu.nvidia.com/v1alpha1 kind: DPUServiceConfiguration metadata: name: doca-hbn namespace: dpf-operator-system spec: deploymentServiceName: "doca-hbn" serviceConfiguration: serviceDaemonSet: annotations: k8s.v1.cni.cncf.io/networks: |- [ {"name": "iprequest", "interface": "ip_lo", "cni-args": {"poolNames": ["loopback"], "poolType": "cidrpool"}}, {"name": "iprequest", "interface": "ip_pf0hpf_red", "cni-args": {"poolNames": ["pool1"], "poolType": "cidrpool", "allocateDefaultGateway": true}}, {"name": "iprequest", "interface": "ip_pf0hpf_blue", "cni-args": {"poolNames": ["pool2"], "poolType": "cidrpool", "allocateDefaultGateway": true}} ]   helmChart: values: configuration: perDPUValuesYAML: | - hostnamePattern: "*" values: bgp_peer_group: hbn   # ---- DPU1, DPU2 => RED only ---- - hostnamePattern: "dpu-node-mt2402xz0f7x-mt2402xz0f7x*" values: role: RED vrf: RED vlan: 11 l2vni: 10010 l3vni: 100001 bgp_autonomous_system: 65101   - hostnamePattern: "dpu-node-mt2402xz0f80-mt2402xz0f80*" values: role: RED vrf: RED vlan: 11 l2vni: 10010 l3vni: 100001 bgp_autonomous_system: 65201   # ---- DPU3, DPU4 => BLUE only ---- - hostnamePattern: "dpu-node-mt2402xz0f9n-mt2402xz0f9n*" values: role: BLUE vrf: BLUE vlan: 21 l2vni: 10020 l3vni: 100002 bgp_autonomous_system: 65301   - hostnamePattern: "dpu-node-mt2402xz0f8g-mt2402xz0f8g*" values: role: BLUE vrf: BLUE vlan: 21 l2vni: 10020 l3vni: 100002 bgp_autonomous_system: 65401   startupYAMLJ2: | - header: model: bluefield nvue-api-version: nvue_v1 rev-id: 1.0 version: HBN 2.4.0   - set: bridge: domain: br_default: vlan: {{ config.vlan }}: vni: {{ config.l2vni }}: {}   evpn: enable: on route-advertise: {}   interface: lo: ip: address: {{ ipaddresses.ip_lo.ip }}/32: {} type: loopback   p0_if,p1_if,pf0hpf_if: type: swp link: mtu: 9000   pf0hpf_if: bridge: domain: br_default: access: {{ config.vlan }}   vlan{{ config.vlan }}: type: svi vlan: {{ config.vlan }} ip: address: {% if config.role == "RED" %} {{ ipaddresses.ip_pf0hpf_red.cidr }}: {} {% else %} {{ ipaddresses.ip_pf0hpf_blue.cidr }}: {} {% endif %} vrf: {{ config.vrf }}   nve: vxlan: arp-nd-suppress: on enable: on source: address: {{ ipaddresses.ip_lo.ip }}   router: bgp: enable: on graceful-restart: mode: full   vrf: default: router: bgp: address-family: ipv4-unicast: enable: on redistribute: connected: enable: on l2vpn-evpn: enable: on autonomous-system: {{ config.bgp_autonomous_system }} enable: on neighbor: p0_if: peer-group: {{ config.bgp_peer_group }} type: unnumbered p1_if: peer-group: {{ config.bgp_peer_group }} type: unnumbered path-selection: multipath: aspath-ignore: on peer-group: {{ config.bgp_peer_group }}: address-family: ipv4-unicast: enable: on l2vpn-evpn: enable: on remote-as: external router-id: {{ ipaddresses.ip_lo.ip }}   {{ config.vrf }}: evpn: enable: on vni: {{ config.l3vni }}: {} loopback: ip: address: {{ ipaddresses.ip_lo.ip }}/32: {} router: bgp: address-family: ipv4-unicast: enable: on redistribute: connected: enable: on route-export: to-evpn: enable: on autonomous-system: {{ config.bgp_autonomous_system }} enable: on router-id: {{ ipaddresses.ip_lo.ip }}   interfaces: - name: p0_if network: mybrhbn - name: p1_if network: mybrhbn - name: pf0hpf_if network: mybrhbn

        manifests/03.1-dpudeployment-installation-pf/hbn-dpuservicetemplate.yaml

        Copy
        Copied!
                    

        --- apiVersion: svc.dpu.nvidia.com/v1alpha1 kind: DPUServiceTemplate metadata: name: doca-hbn namespace: dpf-operator-system spec: deploymentServiceName: "doca-hbn" helmChart: source: repoURL: $HELM_REGISTRY_REPO_URL version: 1.0.5 chart: doca-hbn values: image: repository: $HBN_NGC_IMAGE_URL tag: 3.2.1-doca3.2.1 resources: memory: 6Gi nvidia.com/bf_sf: 4

      • Physical Interfaces for physical ports on the DPU.

        manifests/03.1-dpudeployment-installation-pf/physical-ifaces.yaml

        Copy
        Copied!
                    

        --- apiVersion: svc.dpu.nvidia.com/v1alpha1 kind: DPUServiceInterface metadata: name: p0 namespace: dpf-operator-system spec: template: spec: template: metadata: labels: uplink: "p0" spec: interfaceType: physical physical: interfaceName: p0 --- apiVersion: svc.dpu.nvidia.com/v1alpha1 kind: DPUServiceInterface metadata: name: p1 namespace: dpf-operator-system spec: template: spec: template: metadata: labels: uplink: "p1" spec: interfaceType: physical physical: interfaceName: p1 --- apiVersion: svc.dpu.nvidia.com/v1alpha1 kind: DPUServiceInterface metadata: name: pf0hpf   namespace: dpf-operator-system spec: template: spec: template: metadata: labels: interface: "pf0hpf" spec: interfaceType: pf pf: pfID: 0

      • DPU Service IPAM objects to set up IP Address Management on the DPUCluster.

        manifests/03.1-dpudeployment-installation-pf/hbn-ipam.yaml

        Copy
        Copied!
                    

        --- apiVersion: svc.dpu.nvidia.com/v1alpha1 kind: DPUServiceIPAM metadata: name: pool1 namespace: dpf-operator-system spec: ipv4Network: network: "10.0.121.0/24" gatewayIndex: 2 prefixSize: 29 # These preallocations are not necessary. We specify them so that the validation commands are straightforward. allocations: dpu-node-mt2402xz0f7x-mt2402xz0f7x: 10.0.121.0/29 dpu-node-mt2402xz0f80-mt2402xz0f80: 10.0.121.8/29 --- apiVersion: svc.dpu.nvidia.com/v1alpha1 kind: DPUServiceIPAM metadata: name: pool2 namespace: dpf-operator-system spec: ipv4Network: network: "10.0.122.0/24" gatewayIndex: 2 prefixSize: 29 allocations: dpu-node-mt2402xz0f9n-mt2402xz0f9n: 10.0.122.0/29 dpu-node-mt2402xz0f8g-mt2402xz0f8g: 10.0.122.8/29  

        manifests/03.1-dpudeployment-installation-pf/hbn-loopback-ipam.yaml

        Copy
        Copied!
                    

        --- apiVersion: svc.dpu.nvidia.com/v1alpha1 kind: DPUServiceIPAM metadata: name: loopback namespace: dpf-operator-system spec: ipv4Network: network: "11.0.0.0/24" prefixSize: 32

        Note

        It is necessary to set several environment variables before running this command.

        $ source manifests/00-env-vars/envvars.env

    7. Apply all of the YAML files mentioned above using the following command:

      Jump Node Console

      Copy
      Copied!
                  

      $ cat manifests/03.1-dpudeployment-installation-pf/*.yaml | envsubst | kubectl apply -f -

      Jump Node Console

      Copy
      Copied!
                  

      $ kubectl wait --for=condition=ApplicationsReconciled --namespace dpf-operator-system dpuservices --all dpuservice.svc.dpu.nvidia.com/doca-hbn-wb5pg condition met dpuservice.svc.dpu.nvidia.com/flannel condition met dpuservice.svc.dpu.nvidia.com/multus condition met dpuservice.svc.dpu.nvidia.com/nvidia-k8s-ipam condition met dpuservice.svc.dpu.nvidia.com/ovs-cni condition met dpuservice.svc.dpu.nvidia.com/servicechainset-controller condition met dpuservice.svc.dpu.nvidia.com/servicechainset-rbac-and-crds condition met dpuservice.svc.dpu.nvidia.com/sfc-controller condition met dpuservice.svc.dpu.nvidia.com/sriov-device-plugin condition met   $ kubectl wait --for=condition=DPUIPAMObjectReconciled --namespace dpf-operator-system dpuserviceipam --all dpuserviceipam.svc.dpu.nvidia.com/loopback condition met dpuserviceipam.svc.dpu.nvidia.com/pool1 condition met dpuserviceipam.svc.dpu.nvidia.com/pool2 condition met   $ kubectl wait --for=condition=ServiceInterfaceSetReconciled --namespace dpf-operator-system dpuserviceinterface --all dpuserviceinterface.svc.dpu.nvidia.com/doca-hbn-p0-if-vjqn5 condition met dpuserviceinterface.svc.dpu.nvidia.com/doca-hbn-p1-if-nl8rj condition met dpuserviceinterface.svc.dpu.nvidia.com/doca-hbn-pf0hpf-if-kbfj4 condition met dpuserviceinterface.svc.dpu.nvidia.com/doca-hbn-pf1hpf-if-79zsq condition met dpuserviceinterface.svc.dpu.nvidia.com/p0 condition met dpuserviceinterface.svc.dpu.nvidia.com/p1 condition met dpuserviceinterface.svc.dpu.nvidia.com/pf0hpf condition met dpuserviceinterface.svc.dpu.nvidia.com/pf1hpf condition met   $ kubectl wait --for=condition=ServiceChainSetReconciled --namespace dpf-operator-system dpuservicechain --all dpuservicechain.svc.dpu.nvidia.com/hbn-only-8xrrx condition met

    8. To follow the progress of DPU provisioning, run the following command to check its current phase:

      Jump Node Console

      Copy
      Copied!
                  

      $ watch -n10 "kubectl describe dpu -n dpf-operator-system | grep 'Node Name\|Type\|Last\|Phase'" Every 10.0s: kubectl describe dpu -n dpf-operator-system | grep 'Node Name\|Type\|Last\|Phase' setup5-jump: Wed Jan 7 10:47:25 2026   Dpu Node Name: dpu-node-mt2402xz0f7x Last Transition Time: 2026-01-07T08:31:53Z Type: BFBPrepared Last Transition Time: 2026-01-07T08:31:49Z Type: BFBReady Last Transition Time: 2026-01-07T08:36:38Z Type: BFBTransferred Last Transition Time: 2026-01-07T08:31:52Z Type: FWConfigured Last Transition Time: 2026-01-07T08:31:49Z Type: Initialized Last Transition Time: 2026-01-07T08:31:50Z Type: InterfaceInitialized Last Transition Time: 2026-01-07T08:31:49Z Type: NodeEffectReady Last Transition Time: 2026-01-07T08:43:33Z Reason: OemLastState Type: OSInstalled Last Transition Time: 2026-01-07T08:46:37Z Type: Rebooted Phase: Rebooting Dpu Node Name: dpu-node-mt2402xz0f80 Last Transition Time: 2026-01-07T08:31:52Z Type: BFBPrepared Last Transition Time: 2026-01-07T08:31:49Z Type: BFBReady Last Transition Time: 2026-01-07T08:36:33Z Type: BFBTransferred Last Transition Time: 2026-01-07T08:31:51Z Type: FWConfigured Last Transition Time: 2026-01-07T08:31:49Z Type: Initialized Last Transition Time: 2026-01-07T08:31:49Z Type: InterfaceInitialized Last Transition Time: 2026-01-07T08:31:49Z Type: NodeEffectReady Last Transition Time: 2026-01-07T08:43:19Z Reason: OemLastState Type: OSInstalled Last Transition Time: 2026-01-07T08:46:23Z Type: Rebooted Phase: Rebooting ...                                         

    9. Wait for the Rebooted stage and then Power Cycle the bare-metal host manual.

      After the DPU is up, run following command for each DPU worker:

      Jump Node Console

      Copy
      Copied!
                  

      $ kubectl -n dpf-operator-system annotate dpunode dpu-node-mt2402xz0f7x dpu-node-mt2402xz0f80 dpu-node-mt2402xz0f9n dpu-node-mt2402xz0f8g provisioning.dpu.nvidia.com/dpunode-external-reboot-required-

    10. At this point, the DPU workers should be added to the cluster. As they being added to the cluster, the DPUs are provisioned.

      Jump Node Console

      Copy
      Copied!
                  

      $ watch -n10 "kubectl describe dpu -n dpf-operator-system | grep 'Node Name\|Type\|Last\|Phase'" Every 10.0s: kubectl describe dpu -n dpf-operator-system | grep 'Node Name\|Type\|Last\|Phase' setup5-jump: Wed Jan 7 11:10:49 2026   Dpu Node Name: dpu-node-mt2402xz0f7x Type: InternalIP Type: Hostname Last Transition Time: 2026-01-07T09:09:57Z Type: Ready Last Transition Time: 2026-01-07T08:31:53Z Type: BFBPrepared Last Transition Time: 2026-01-07T08:31:49Z Type: BFBReady Last Transition Time: 2026-01-07T08:36:38Z Type: BFBTransferred Last Transition Time: 2026-01-07T09:09:57Z Type: DPUClusterReady Last Transition Time: 2026-01-07T08:31:52Z Type: FWConfigured Last Transition Time: 2026-01-07T08:31:49Z Type: Initialized Last Transition Time: 2026-01-07T08:31:50Z Type: InterfaceInitialized Last Transition Time: 2026-01-07T08:31:49Z Type: NodeEffectReady Last Transition Time: 2026-01-07T09:09:57Z Type: NodeEffectRemoved Last Transition Time: 2026-01-07T08:43:33Z Reason: OemLastState Type: OSInstalled Last Transition Time: 2026-01-07T09:09:57Z Type: Rebooted Phase: Ready Dpu Node Name: dpu-node-mt2402xz0f80 Type: InternalIP Type: Hostname Last Transition Time: 2026-01-07T09:10:24Z Type: Ready Last Transition Time: 2026-01-07T08:31:52Z Type: BFBPrepared Last Transition Time: 2026-01-07T08:31:49Z Type: BFBReady Last Transition Time: 2026-01-07T08:36:33Z Type: BFBTransferred Last Transition Time: 2026-01-07T09:10:24Z Type: DPUClusterReady Last Transition Time: 2026-01-07T08:31:51Z Type: FWConfigured Last Transition Time: 2026-01-07T08:31:49Z Type: Initialized Last Transition Time: 2026-01-07T08:31:49Z Type: InterfaceInitialized Last Transition Time: 2026-01-07T08:31:49Z Type: NodeEffectReady Last Transition Time: 2026-01-07T09:10:24Z Type: NodeEffectRemoved Last Transition Time: 2026-01-07T08:43:19Z Reason: OemLastState Type: OSInstalled Last Transition Time: 2026-01-07T09:10:24Z Type: Rebooted Phase: Ready ...

    11. Finally, validate that all the different DPU-related objects are now in the Ready state:

      Jump Node Console

      Copy
      Copied!
                  

      $ kubectl get secrets -n dpu-cplane-tenant1 dpu-cplane-tenant1-admin-kubeconfig -o json | jq -r '.data["admin.conf"]' | base64 --decode > /home/depuser/dpu-cluster.config   $ echo "alias ki='KUBECONFIG=/home/depuser/dpu-cluster.config kubectl'" >> ~/.bashrc $ echo 'alias dpfctl="kubectl -n dpf-operator-system exec deploy/dpf-operator-controller-manager -- /dpfctl "' >> ~/.bashrc   $ dpfctl describe dpudeployments NAME NAMESPACE STATUS REASON SINCE MESSAGE DPFOperatorConfig/dpfoperatorconfig dpf-operator-system Ready: True Success 3m3s └─DPUDeployments └─DPUDeployment/hbn dpf-operator-system Ready: True Success 22s ├─DPUServiceChains │ └─DPUServiceChain/hbn-wd7fs dpf-operator-system Ready: True Success 65s ├─DPUServiceInterfaces │ └─3 DPUServiceInterfaces... dpf-operator-system Ready: True Success 70s See doca-hbn-p0-if-749n9, doca-hbn-p1-if-fn8w5, doca-hbn-pf0hpf-if-9s8c6 ├─DPUSets │ └─DPUSet/hbn-dpuset1 dpf-operator-system Ready: True Success 71s │ ├─BFB/bf-bundle-v25.10.0 dpf-operator-system Ready: True Ready 39m File: bf-bundle-3.2.1-34_25.11_ubuntu-24.04_64k_prod.bfb, DOCA: 3.2.1 │ ├─DPUNodes │ │ └─4 DPUNodes... dpf-operator-system Ready: True Ready 98s See dpu-node-mt2402xz0f7x, dpu-node-mt2402xz0f80, dpu-node-mt2402xz0f8g, dpu-node-mt2402xz0f9n │ └─DPUs │ └─4 DPUs... dpf-operator-system Ready: True DPUReady 98s See dpu-node-mt2402xz0f7x-mt2402xz0f7x, dpu-node-mt2402xz0f80-mt2402xz0f80, │ dpu-node-mt2402xz0f8g-mt2402xz0f8g, dpu-node-mt2402xz0f9n-mt2402xz0f9n └─Services ├─DPUServiceTemplates │ └─DPUServiceTemplate/doca-hbn dpf-operator-system Ready: True Success 39m └─DPUServices └─1 DPUServices... dpf-operator-system Ready: True Success 50s See doca-hbn-jxkxw     $ ki get node -A NAME STATUS ROLES AGE VERSION dpu-node-mt2402xz0f7x-mt2402xz0f7x Ready <none> 5m18s v1.34.3 dpu-node-mt2402xz0f80-mt2402xz0f80 Ready <none> 6m12s v1.34.3 dpu-node-mt2402xz0f8g-mt2402xz0f8g Ready <none> 6m14s v1.34.3 dpu-node-mt2402xz0f9n-mt2402xz0f9n Ready <none> 6m22s v1.34.3   $ kubectl get dpu -A NAMESPACE NAME READY PHASE AGE dpf-operator-system dpu-node-mt2402xz0f7x-mt2402xz0f7x True Ready 36m dpf-operator-system dpu-node-mt2402xz0f80-mt2402xz0f80 True Ready 36m dpf-operator-system dpu-node-mt2402xz0f8g-mt2402xz0f8g True Ready 36m dpf-operator-system dpu-node-mt2402xz0f9n-mt2402xz0f9n True Ready 36m   $ kubectl wait --for=condition=ready --namespace dpf-operator-system dpu --all dpu.provisioning.dpu.nvidia.com/dpu-node-mt2402xz0f7x-mt2402xz0f7x condition met dpu.provisioning.dpu.nvidia.com/dpu-node-mt2402xz0f80-mt2402xz0f80 condition met dpu.provisioning.dpu.nvidia.com/dpu-node-mt2402xz0f8g-mt2402xz0f8g condition met dpu.provisioning.dpu.nvidia.com/dpu-node-mt2402xz0f9n-mt2402xz0f9n condition met   $ ki get pods -A -o wide NAMESPACE NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES dpf-operator-system dpu-cplane-tenant1-cni-installer-89kn4 1/1 Running 0 6m50s 10.244.2.3 dpu-node-mt2402xz0f80-mt2402xz0f80 <none> <none> dpf-operator-system dpu-cplane-tenant1-cni-installer-s8h4z 1/1 Running 0 7m1s 10.244.0.5 dpu-node-mt2402xz0f9n-mt2402xz0f9n <none> <none> dpf-operator-system dpu-cplane-tenant1-cni-installer-wb29j 1/1 Running 0 5m57s 10.244.3.2 dpu-node-mt2402xz0f7x-mt2402xz0f7x <none> <none> dpf-operator-system dpu-cplane-tenant1-cni-installer-zhzqh 1/1 Running 0 6m53s 10.244.1.4 dpu-node-mt2402xz0f8g-mt2402xz0f8g <none> <none> dpf-operator-system dpu-cplane-tenant1-doca-hbn-jxkxw-ds-5sbzs 2/2 Running 0 2m54s 10.244.0.6 dpu-node-mt2402xz0f9n-mt2402xz0f9n <none> <none> dpf-operator-system dpu-cplane-tenant1-doca-hbn-jxkxw-ds-ftnpn 2/2 Running 0 2m54s 10.244.1.5 dpu-node-mt2402xz0f8g-mt2402xz0f8g <none> <none> dpf-operator-system dpu-cplane-tenant1-doca-hbn-jxkxw-ds-gjsqq 2/2 Running 0 3m21s 10.244.3.4 dpu-node-mt2402xz0f7x-mt2402xz0f7x <none> <none> dpf-operator-system dpu-cplane-tenant1-doca-hbn-jxkxw-ds-k78vb 2/2 Running 0 2m54s 10.244.2.4 dpu-node-mt2402xz0f80-mt2402xz0f80 <none> <none> dpf-operator-system dpu-cplane-tenant1-nvidia-k8s-ipam-controller-5c77854fcc-grchr 1/1 Running 0 127m 10.244.0.3 dpu-node-mt2402xz0f9n-mt2402xz0f9n <none> <none> dpf-operator-system dpu-cplane-tenant1-nvidia-k8s-ipam-node-ds-krgzw 1/1 Running 0 6m53s 10.244.1.2 dpu-node-mt2402xz0f8g-mt2402xz0f8g <none> <none> dpf-operator-system dpu-cplane-tenant1-nvidia-k8s-ipam-node-ds-pr85m 1/1 Running 0 5m57s 10.244.3.3 dpu-node-mt2402xz0f7x-mt2402xz0f7x <none> <none> dpf-operator-system dpu-cplane-tenant1-nvidia-k8s-ipam-node-ds-x4lfs 1/1 Running 0 7m1s 10.244.0.2 dpu-node-mt2402xz0f9n-mt2402xz0f9n <none> <none> dpf-operator-system dpu-cplane-tenant1-nvidia-k8s-ipam-node-ds-zlzvf 1/1 Running 0 6m50s 10.244.2.2 dpu-node-mt2402xz0f80-mt2402xz0f80 <none> <none> dpf-operator-system dpu-cplane-tenant1-ovs-cni-arm64-bpljq 1/1 Running 0 7m1s 10.0.110.213 dpu-node-mt2402xz0f9n-mt2402xz0f9n <none> <none> dpf-operator-system dpu-cplane-tenant1-ovs-cni-arm64-gls6h 1/1 Running 0 6m50s 10.0.110.212 dpu-node-mt2402xz0f80-mt2402xz0f80 <none> <none> dpf-operator-system dpu-cplane-tenant1-ovs-cni-arm64-j8wr4 1/1 Running 0 5m57s 10.0.110.211 dpu-node-mt2402xz0f7x-mt2402xz0f7x <none> <none> dpf-operator-system dpu-cplane-tenant1-ovs-cni-arm64-kbrrn 1/1 Running 0 6m53s 10.0.110.214 dpu-node-mt2402xz0f8g-mt2402xz0f8g <none> <none> dpf-operator-system dpu-cplane-tenant1-sfc-controller-node-ds-vmfq4 1/1 Running 0 5m57s 10.0.110.211 dpu-node-mt2402xz0f7x-mt2402xz0f7x <none> <none> dpf-operator-system dpu-cplane-tenant1-sfc-controller-node-ds-x45nl 1/1 Running 0 6m53s 10.0.110.214 dpu-node-mt2402xz0f8g-mt2402xz0f8g <none> <none> dpf-operator-system dpu-cplane-tenant1-sfc-controller-node-ds-xskh9 1/1 Running 0 7m1s 10.0.110.213 dpu-node-mt2402xz0f9n-mt2402xz0f9n <none> <none> dpf-operator-system dpu-cplane-tenant1-sfc-controller-node-ds-zfmt5 1/1 Running 1 (5m46s ago) 6m50s 10.0.110.212 dpu-node-mt2402xz0f80-mt2402xz0f80 <none> <none> dpf-operator-system kube-flannel-ds-2shh7 1/1 Running 0 7m2s 10.0.110.213 dpu-node-mt2402xz0f9n-mt2402xz0f9n <none> <none> dpf-operator-system kube-flannel-ds-42mlq 1/1 Running 0 6m54s 10.0.110.214 dpu-node-mt2402xz0f8g-mt2402xz0f8g <none> <none> dpf-operator-system kube-flannel-ds-m7xgt 1/1 Running 0 5m58s 10.0.110.211 dpu-node-mt2402xz0f7x-mt2402xz0f7x <none> <none> dpf-operator-system kube-flannel-ds-vd574 1/1 Running 0 6m52s 10.0.110.212 dpu-node-mt2402xz0f80-mt2402xz0f80 <none> <none> dpf-operator-system kube-multus-ds-d5kb4 1/1 Running 0 6m53s 10.0.110.214 dpu-node-mt2402xz0f8g-mt2402xz0f8g <none> <none> dpf-operator-system kube-multus-ds-gnv88 1/1 Running 0 6m50s 10.0.110.212 dpu-node-mt2402xz0f80-mt2402xz0f80 <none> <none> dpf-operator-system kube-multus-ds-l66tm 1/1 Running 0 7m1s 10.0.110.213 dpu-node-mt2402xz0f9n-mt2402xz0f9n <none> <none> dpf-operator-system kube-multus-ds-mh4cj 1/1 Running 0 5m57s 10.0.110.211 dpu-node-mt2402xz0f7x-mt2402xz0f7x <none> <none> dpf-operator-system kube-sriov-device-plugin-64c29 1/1 Running 0 7m1s 10.0.110.213 dpu-node-mt2402xz0f9n-mt2402xz0f9n <none> <none> dpf-operator-system kube-sriov-device-plugin-6js9j 1/1 Running 0 6m50s 10.0.110.212 dpu-node-mt2402xz0f80-mt2402xz0f80 <none> <none> dpf-operator-system kube-sriov-device-plugin-g5gkx 1/1 Running 0 6m53s 10.0.110.214 dpu-node-mt2402xz0f8g-mt2402xz0f8g <none> <none> dpf-operator-system kube-sriov-device-plugin-lk4z7 1/1 Running 0 5m57s 10.0.110.211 dpu-node-mt2402xz0f7x-mt2402xz0f7x <none> <none> kube-system coredns-66bc5c9577-gqn8d 1/1 Running 0 127m 10.244.0.4 dpu-node-mt2402xz0f9n-mt2402xz0f9n <none> <none> kube-system coredns-66bc5c9577-p2xnm 1/1 Running 0 127m 10.244.1.3 dpu-node-mt2402xz0f8g-mt2402xz0f8g <none> <none> kube-system kube-proxy-64865 1/1 Running 0 5m58s 10.0.110.211 dpu-node-mt2402xz0f7x-mt2402xz0f7x <none> <none> kube-system kube-proxy-hvjjp 1/1 Running 0 6m52s 10.0.110.212 dpu-node-mt2402xz0f80-mt2402xz0f80 <none> <none> kube-system kube-proxy-qfbwh 1/1 Running 0 6m54s 10.0.110.214 dpu-node-mt2402xz0f8g-mt2402xz0f8g <none> <none> kube-system kube-proxy-w9gg4 1/1 Running 0 7m2s 10.0.110.213 dpu-node-mt2402xz0f9n-mt2402xz0f9n <none> <none>

      Congratulations! The DPF system with the HBN service has been successfully installed.

    DTS and BlueMan DPU Services Installation

    This section focuses on provisioning NVIDIA®BlueField®-3 DPUs using DPF, installing the DTS and BlueMan DPU Services on the second DPU in the first bare-metal host, and enabling a unified interface for accessing essential DPU information, health status, and telemetry metrics.

    Before deploying the objects under doca-platform/dpuservices/dts-blueman/directory, a few adjustments are required.

    1. Export environment variables for the installation:

      Jump Node Console

      Copy
      Copied!
                  

      $ source manifests/00-env-vars/envvars.env

    2. Create a directory from where all the commands will be run:

      Jump Node Console

      Copy
      Copied!
                  

      $ mkdir /home/depuser/doca-platform/dpuservices/dts-blueman/ $ cd /home/depuser/doca-platform/dpuservices/dts-blueman/

    1. Create the DPUFlavor using the following YAML:

      DPUFlavor.yaml

      Copy
      Copied!
                  

      --- apiVersion: provisioning.dpu.nvidia.com/v1alpha1 kind: DPUFlavor metadata: name: dpf-provisioning-dts-blueman namespace: dpf-operator-system spec: bfcfgParameters: - UPDATE_ATF_UEFI=yes - UPDATE_DPU_OS=yes - WITH_NIC_FW_UPDATE=yes configFiles: - operation: override path: /etc/mellanox/mlnx-bf.conf permissions: "0644" raw: | ALLOW_SHARED_RQ="no" IPSEC_FULL_OFFLOAD="no" ENABLE_ESWITCH_MULTIPORT="yes" - operation: override path: /etc/mellanox/mlnx-ovs.conf permissions: "0644" raw: | CREATE_OVS_BRIDGES="no" OVS_DOCA="yes" - operation: override path: /etc/mellanox/mlnx-sf.conf permissions: "0644" raw: "" grub: kernelParameters: - console=hvc0 - console=ttyAMA0 - earlycon=pl011,0x13010000 - fixrttc - net.ifnames=0 - biosdevname=0 - iommu.passthrough=1 - cgroup_no_v1=net_prio,net_cls - hugepagesz=2048kB - hugepages=3072 nvconfig: - device: '*' parameters: - PF_BAR2_ENABLE=0 - PER_PF_NUM_SF=1 - PF_TOTAL_SF=20 - PF_SF_BAR_SIZE=10 - NUM_PF_MSIX_VALID=0 - PF_NUM_PF_MSIX_VALID=1 - PF_NUM_PF_MSIX=228 - INTERNAL_CPU_MODEL=1 - INTERNAL_CPU_OFFLOAD_ENGINE=0 - SRIOV_EN=1 - NUM_OF_VFS=46 - LAG_RESOURCE_ALLOCATION=1 - LINK_TYPE_P1=ETH - LINK_TYPE_P2=ETH - EXP_ROM_UEFI_x86_ENABLE=1 ovs: rawConfigScript: | _ovs-vsctl() { ovs-vsctl --no-wait --timeout 15 "$@" }   _ovs-vsctl set Open_vSwitch . other_config:doca-init=true _ovs-vsctl set Open_vSwitch . other_config:dpdk-max-memzones=50000 _ovs-vsctl set Open_vSwitch . other_config:hw-offload=true _ovs-vsctl set Open_vSwitch . other_config:pmd-quiet-idle=true _ovs-vsctl set Open_vSwitch . other_config:max-idle=20000 _ovs-vsctl set Open_vSwitch . other_config:max-revalidator=5000 _ovs-vsctl set Open_vSwitch . other_config:ctl-pipe-size=1024 _ovs-vsctl --if-exists del-br ovsbr1 _ovs-vsctl --if-exists del-br ovsbr2 _ovs-vsctl --may-exist add-br br-sfc _ovs-vsctl set bridge br-sfc datapath_type=netdev _ovs-vsctl set bridge br-sfc fail_mode=secure _ovs-vsctl --may-exist add-port br-sfc p0 _ovs-vsctl set Interface p0 type=dpdk _ovs-vsctl set Port p0 external_ids:dpf-type=physical   _ovs-vsctl set Open_vSwitch . external-ids:ovn-bridge-datapath-type=netdev _ovs-vsctl --may-exist add-br br-ovn _ovs-vsctl set bridge br-ovn datapath_type=netdev _ovs-vsctl br-set-external-id br-ovn bridge-id br-ovn _ovs-vsctl br-set-external-id br-ovn bridge-uplink puplinkbrovntobrsfc _ovs-vsctl --may-exist add-port br-ovn pf0hpf _ovs-vsctl set Interface pf0hpf type=dpdk

    2. Create the DPUDeployment.yaml file:

      DPUDeployment.yaml

      Copy
      Copied!
                  

      --- apiVersion: svc.dpu.nvidia.com/v1alpha1 kind: DPUDeployment metadata: name: dts-blueman namespace: dpf-operator-system spec: dpus: bfb: bf-bundle-$TAG     dpuSets: - nameSuffix: dpuset-dts-blueman nodeSelector: matchLabels: feature.node.kubernetes.io/dpu-enabled: "true" dpuSelector: provisioning.dpu.nvidia.com/dpudevice-service-name: dts-blueman flavor: dpf-provisioning-dts-blueman nodeEffect: noEffect: true services: dts: serviceTemplate: dts serviceConfiguration: dts blueman: serviceTemplate: blueman serviceConfiguration: blueman

    3. Create the DPUServiceconfig_dts.yaml file:

      DPUServiceconfig_dts.yaml

      Copy
      Copied!
                  

      --- apiVersion: svc.dpu.nvidia.com/v1alpha1 kind: DPUServiceConfiguration metadata: name: dts namespace: dpf-operator-system spec: deploymentServiceName: "dts"

    4. Create the DPUServicetemplate_dts.yaml file:

      DPUServicetemplate_dts.yaml

      Copy
      Copied!
                  

      --- apiVersion: svc.dpu.nvidia.com/v1alpha1 kind: DPUServiceTemplate metadata: name: dts namespace: dpf-operator-system spec: deploymentServiceName: "dts" helmChart: source: repoURL: $HELM_REGISTRY_REPO_URL version: 1.0.8 chart: doca-telemetry

    5. Create the DPUServiceconfig_blueman.yaml file:

      DPUServiceconfig_blueman.yaml

      Copy
      Copied!
                  

      --- apiVersion: svc.dpu.nvidia.com/v1alpha1 kind: DPUServiceConfiguration metadata: name: blueman namespace: dpf-operator-system spec: deploymentServiceName: "blueman"

    6. Create the DPUServicetemplate_blueman.yaml file:

      DPUServiceTemplate.yaml

      Copy
      Copied!
                  

      --- apiVersion: svc.dpu.nvidia.com/v1alpha1 kind: DPUServiceTemplate metadata: name: blueman namespace: dpf-operator-system spec: deploymentServiceName: "blueman" helmChart: source: repoURL: $HELM_REGISTRY_REPO_URL version: 1.0.8 chart: doca-blueman

    7. Apply all of the YAML files mentioned above using the following command:

      Jump Node Console

      Copy
      Copied!
                  

      $ cat *.yaml | envsubst | kubectl apply -f -

    8. To follow the progress of DPU provisioning, run the following command several time (take 20-30 minutes) to check its current phase:

      Jump Node Console

      Copy
      Copied!
                  

      $ dpfctl describe dpudeployments ... │ │ └─DPUs │ │ ├─DPU/dpu-node-mt2511600r8p-mt2511600r8p dpf-operator-system │ │ │ ├─Rebooted False WaitingForManualPowerCycleOrReboot 13m │ │ │ └─Ready False Rebooting 13m │ │ ├─DPU/dpu-node-mt2511600rc3-mt2511600rc3 dpf-operator-system │ │ │ ├─Rebooted False WaitingForManualPowerCycleOrReboot 11m │ │ │ └─Ready False Rebooting 11m │ │ ├─DPU/dpu-node-mt2511600rp1-mt2511600rp1 dpf-operator-system │ │ │ ├─Rebooted False WaitingForManualPowerCycleOrReboot 12m │ │ │ └─Ready False Rebooting 12m │ │ └─DPU/dpu-node-mt2511600ruh-mt2511600ruh dpf-operator-system │ │ ├─Rebooted False WaitingForManualPowerCycleOrReboot 13m │ │ └─Ready False Rebooting 13m                                                                ...

    9. Wait for the Rebooted stage and then Power Cycle the bare-metal host manual.

      After the DPU is up, run following command for each DPU worker:

      Jump Node Console

      Copy
      Copied!
                  

      $ kubectl -n dpf-operator-system annotate dpunode dpu-node-mt2511600rc3 dpu-node-mt2511600ruh dpu-node-mt2511600r8p dpu-node-mt2511600rp1 provisioning.dpu.nvidia.com/dpunode-external-reboot-required-

    10. At this point, the DPU workers should be added to the cluster. As they being added to the cluster, the DPUs are provisioned.

      Jump Node Console

      Copy
      Copied!
                  

      $ dpfctl describe dpudeployments NAME NAMESPACE STATUS REASON SINCE MESSAGE DPFOperatorConfig/dpfoperatorconfig dpf-operator-system Ready: True Success 118s └─DPUDeployments └─2 DPUDeployments... dpf-operator-system Ready: True Success 3m49s See dts-blueman, hbn

    11. Finally, validate that all the different DPU-related objects are now in the Ready state:

      Jump Node Console

      Copy
      Copied!
                  

      $ echo "alias ki='KUBECONFIG=/home/depuser/dpu-cluster.config kubectl'" >> ~/.bashrc $ kubectl get secrets -n dpu-cplane-tenant1 dpu-cplane-tenant1-admin-kubeconfig -o json | jq -r '.data["admin.conf"]' | base64 --decode > /home/depuser/dpu-cluster.config $ ki get node -A NAME STATUS ROLES AGE VERSION dpu-node-mt2402xz0f7x-mt2402xz0f7x Ready <none> 113m v1.34.3 dpu-node-mt2402xz0f80-mt2402xz0f80 Ready <none> 114m v1.34.3 dpu-node-mt2402xz0f8g-mt2402xz0f8g Ready <none> 114m v1.34.3 dpu-node-mt2402xz0f9n-mt2402xz0f9n Ready <none> 114m v1.34.3 dpu-node-mt2511600r8p-mt2511600r8p Ready <none> 5m41s v1.34.3 dpu-node-mt2511600rc3-mt2511600rc3 Ready <none> 5m20s v1.34.3 dpu-node-mt2511600rp1-mt2511600rp1 Ready <none> 5m34s v1.34.3 dpu-node-mt2511600ruh-mt2511600ruh Ready <none> 5m56s v1.34.3   $ kubectl get dpu -A NAMESPACE NAME READY PHASE AGE dpf-operator-system dpu-node-mt2402xz0f7x-mt2402xz0f7x True Ready 118m dpf-operator-system dpu-node-mt2402xz0f80-mt2402xz0f80 True Ready 118m dpf-operator-system dpu-node-mt2402xz0f8g-mt2402xz0f8g True Ready 118m dpf-operator-system dpu-node-mt2402xz0f9n-mt2402xz0f9n True Ready 118m dpf-operator-system dpu-node-mt2511600r8p-mt2511600r8p True Ready 39m dpf-operator-system dpu-node-mt2511600rc3-mt2511600rc3 True Ready 39m dpf-operator-system dpu-node-mt2511600rp1-mt2511600rp1 True Ready 39m dpf-operator-system dpu-node-mt2511600ruh-mt2511600ruh True Ready 39m     $ kubectl wait --for=condition=ready --namespace dpf-operator-system dpu --all dpu.provisioning.dpu.nvidia.com/dpu-node-mt2402xz0f7x-mt2402xz0f7x condition met dpu.provisioning.dpu.nvidia.com/dpu-node-mt2402xz0f80-mt2402xz0f80 condition met dpu.provisioning.dpu.nvidia.com/dpu-node-mt2402xz0f8g-mt2402xz0f8g condition met dpu.provisioning.dpu.nvidia.com/dpu-node-mt2402xz0f9n-mt2402xz0f9n condition met dpu.provisioning.dpu.nvidia.com/dpu-node-mt2511600r8p-mt2511600r8p condition met dpu.provisioning.dpu.nvidia.com/dpu-node-mt2511600rc3-mt2511600rc3 condition met dpu.provisioning.dpu.nvidia.com/dpu-node-mt2511600rp1-mt2511600rp1 condition met dpu.provisioning.dpu.nvidia.com/dpu-node-mt2511600ruh-mt2511600ruh condition met

      Congratulations! The DTS and BlueMan services have been successfully deployed on the second DPU in the first bare-metal host.

    Zero-Trust Mode Checking

    Here's a step-by-step procedure to check the Zero-Trust Mode on your NVIDIA BlueField DPU from the host server, including the installation of the Mellanox Firmware Tools (MFT).

    Note

    Ubuntu 24.04 was installed on the servers.

    1. Navigate to the NVIDIA Downloads Site: Open your web browser and go to the official NVIDIA Mellanox software downloads page.
    2. Select the Latest Version for your OS:

      image-2025-9-9_12-24-17-version-1-modificationdate-1763027346670-api-v2.png

    3. Transfer and Extract MFT Tools on the Worker 1 BareMetal Host.

      First Pod Console

      Copy
      Copied!
                  

      root@worker1:~# tar -xvzf /tmp/mft-4.33.0-169-x86_64-deb.tgz

    4. Navigate into the Extracted Directory.

      First Pod Console

      Copy
      Copied!
                  

      root@worker1:~# cd mft-4.33.0-169-x86_64-deb/

    5. Run following commands.

      First Pod Console

      Copy
      Copied!
                  

      root@worker1:~# apt-get install gcc make dkms root@worker1:~# ./install.sh

    6. Start MST (Mellanox Software Tools) Service and Identify DPU Device Name.

      First Pod Console

      Copy
      Copied!
                  

      root@worker1:~# mst start   Starting MST (Mellanox Software Tools) driver set Loading MST PCI module - Success Loading MST PCI configuration module - Success Create devices Unloading MST PCI module (unused) - Success   root@worker1:~# mst status   MST modules: ------------ MST PCI module is not loaded MST PCI configuration module loaded   MST devices: ------------ /dev/mst/mt41692_pciconf0 - PCI configuration cycles access. domain:bus:dev.fn=0000:2b:00.0 addr.reg=88 data.reg=92 cr_bar.gw_offset=-1 Chip revision is: 01

    7. Perform Zero-Trust Checking.

      First Pod Console

      Copy
      Copied!
                  

      root@worker1:~# mlxprivhost -d 2b:00.0 q Host configurations ------------------- level : RESTRICTED   Port functions status: ----------------------- disable_rshim : TRUE disable_tracer : TRUE disable_port_owner : TRUE disable_counter_rd : TRUE   #Expected Zero-Trust Output.

      This is the most definitive confirmation. level : RESTRICTED means the host is in Zero-Trust Mode, and the TRUE flags confirm individual security restrictions are active.

    8. Check Firmware Access with mlxfwmanager:

      First Pod Console

      Copy
      Copied!
                  

      root@worker1:~# mlxfwmanager -d 2b:00.0 --query Querying Mellanox devices firmware ...   Device #1: ----------   Device Type: BlueField3 Part Number: -- Description: PSID: PCI Device Name: 2b:00.0 Base MAC: N/A Versions: Current Available FW --   Status: Failed to open device

      "Failed to open device" indicates the host is blocked from accessing the DPU for firmware operations, a key aspect of Zero-Trust.

    9. Check Device Configuration with mlxconfig:

      First Pod Console

      Copy
      Copied!
                  

      root@worker1:~# mlxconfig -d 2b:00.0 q   Device #1: ----------   Device type: BlueField3 Name: 900-9D3B6-00CV-A_Ax Description: NVIDIA BlueField-3 B3220 P-Series FHHL DPU; 200GbE (default mode) / NDR200 IB; Dual-port QSFP112; PCIe Gen5.0 x16 with x16 PCIe extension option; 16 Arm cores; 32GB on-board DDR; integrated BMC; Crypto Enabled Device: 2b:00.0   Configurations: Next Boot ...        ALLOW_RD_COUNTERS True(1) # No RO, but restricted by mlxprivhost ...         PORT_OWNER True(1) # No RO, but restricted by mlxprivhost ...                 TRACER_ENABLE True(1) # No RO, but restricted by mlxprivhost

      Most configuration parameters will be prefixed with RO (Read-Only). Parameters related to direct host control, like PORT_OWNER, ALLOW_RD_COUNTERS, TRACER_ENABLE, even if shown as True(1) for the DPU's internal capability, will be unenforcible by the host due to the mlxprivhost restrictions. The widespread RO status shows that the host cannot modify these configurations, reinforcing the DPU's autonomous and secure state. The few parameters without RO are still overridden by the mlxprivhost security policy.

    10. Check Low-Level Hardware Access with ethtool:

      First Pod Console

      Copy
      Copied!
                  

      root@worker1:~# ethtool -d ens1f0np0 Cannot get register dump: Operation not supported

      This confirms the DPU is preventing deep, low-level hardware access from the host, aligning with Zero-Trust's isolation goals.

    Conclusion

    The command outputs of mlxprivhost, mlxfwmanager, mlxconfig (showing RO flags), and ethtool (showing "Operation not supported"), then your NVIDIA BlueField DPU is indeed operating in Zero-Trust Mode.

    This means the host has significantly restricted privileges and cannot perform sensitive operations on the DPU, ensuring its security and isolation.

    Infrastructure Bandwidth & Latency Validation

    Verify the deployment and confirm that the DPU system achieves link-speed performance and low latency by running various tests:

    1. Iperf TCP—for bandwidth measurements
    2. RDMA—for bandwidth and latency measurements
    3. Network isolation

    Each test is described in detail. At the end of each test, the achieved performance is displayed.

    Note

    Make sure that the servers are tuned for maximum performance (not covered in this document).

    Performance and Isolation Tests

    Now that the test deployment is running, perform bandwidth and latency performance tests between two bare-metal workload servers.

    Note

    Ubuntu 24.04 was installed on the servers.

    1. Before running the tests, check the Gateway address on each HBN pod:

      Jump Node Console

      Copy
      Copied!
                  

      $ ki -n dpf-operator-system get pod -o wide | grep doca-hbn dpu-cplane-tenant1-doca-hbn-jxkxw-ds-5sbzs 2/2 Running 0 15m 10.244.0.6 dpu-node-mt2402xz0f9n-mt2402xz0f9n <none> <none> dpu-cplane-tenant1-doca-hbn-jxkxw-ds-ftnpn 2/2 Running 0 15m 10.244.1.5 dpu-node-mt2402xz0f8g-mt2402xz0f8g <none> <none> dpu-cplane-tenant1-doca-hbn-jxkxw-ds-gjsqq 2/2 Running 0 16m 10.244.3.4 dpu-node-mt2402xz0f7x-mt2402xz0f7x <none> <none> dpu-cplane-tenant1-doca-hbn-jxkxw-ds-k78vb 2/2 Running 0 15m 10.244.2.4 dpu-node-mt2402xz0f80-mt2402xz0f80 <none> <none>     $ ki exec -it -n dpf-operator-system dpu-cplane-tenant1-doca-hbn-jxkxw-ds-gjsqq -- bash Defaulted container "doca-hbn" out of: doca-hbn, hbn-sidecar, hbn-init (init)   root@dpu-cplane-tenant1-doca-hbn-jxkxw-ds-gjsqq:/tmp# ip a s ... 9: vlan11@br_default: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9216 qdisc noqueue master RED state UP group default qlen 1000 link/ether 0a:ff:4e:3e:99:24 brd ff:ff:ff:ff:ff:ff inet 10.0.121.2/29 scope global vlan11 valid_lft forever preferred_lft forever inet6 fe80::8ff:4eff:fe3e:9924/64 scope link valid_lft forever preferred_lft forever ...   $ exit   $  ki exec -it -n dpf-operator-system dpu-cplane-tenant1-doca-hbn-jxkxw-ds-k78vb -- bash Defaulted container "doca-hbn" out of: doca-hbn, hbn-sidecar, hbn-init (init)   root@dpu-cplane-tenant1-doca-hbn-jxkxw-ds-k78vb:/tmp# ip a s ... 9: vlan11@br_default: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9216 qdisc noqueue master RED state UP group default qlen 1000 link/ether 0e:7d:99:41:2e:11 brd ff:ff:ff:ff:ff:ff inet 10.0.121.10/29 scope global vlan11 valid_lft forever preferred_lft forever inet6 fe80::c7d:99ff:fe41:2e11/64 scope link valid_lft forever preferred_lft forever ...   $ exit

    2. Connect to a first Workload Server console, install iperf, perftest, check DPU Hight Speed Interfaces, set route to ethernet and identify the relevant RDMA device:

      First Pod Console

      Copy
      Copied!
                  

      root@worker1:~# apt install iperf3 root@worker1:~# apt install perftest root@worker1:~# ip a s ... 6: ens1f0np0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000 link/ether 58:a2:e1:73:69:e6 brd ff:ff:ff:ff:ff:ff altname enp43s0f0np0 ...   root@worker1:~# ip route add 10.0.123.0/22 via 10.0.121.2   depuser@worker2:~$ ping 8.8.8.8 PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data. 64 bytes from 8.8.8.8: icmp_seq=1 ttl=117 time=5.35 ms 64 bytes from 8.8.8.8: icmp_seq=2 ttl=117 time=5.10 ms 64 bytes from 8.8.8.8: icmp_seq=3 ttl=117 time=5.15 ms   root@worker1:~# rdma link | grep ens1f0np0 link mlx5_0/1 state DOWN physical_state DISABLED netdev ens1f0np0

    3. Configure the ens1f0np0 interface on Ubuntu 24.04 using iproute2 .

      Configuration Overview

      Interface

      IP Address

      Default Gateway

      ens1f0np0

      10.0.121.1/29

      10.0.121.2/29

      First Pod Console

      Copy
      Copied!
                  

      # Bring up physical interfaces root@worker1:~# ip link set dev ens1f0np0 up   # Assign IP addresses root@worker1:~# ip addr add 10.0.121.1/29 dev ens1f0np0   # Set default route root@worker1:~# ip route add default via 10.0.121.2 dev ens1f0np0

    4. Using another console window , reconnect to the jump node and connect to a second Workload Server .

      From within the servers, install iperf, perftest , check DPU Hight Speed Interfaces, set route to ethernet and identify the relevant RDMA device:

      First Pod Console

      Copy
      Copied!
                  

      root@worker2:~# apt install iperf3 root@worker2:~# apt install perftest root@worker2:~# ip a s ... 6: ens1f0np0: <BROADCAST,MULTICAST> mtu 9000 qdisc noop state DOWN group default qlen 1000 link/ether 58:a2:e1:73:6a:58 brd ff:ff:ff:ff:ff:ff altname enp43s0f0np0 ...   root@worker2:~# ip route add 10.0.123.0/22 via 10.0.121.10   depuser@worker2:~$ ping 8.8.8.8 PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data. 64 bytes from 8.8.8.8: icmp_seq=1 ttl=117 time=5.35 ms 64 bytes from 8.8.8.8: icmp_seq=2 ttl=117 time=5.10 ms 64 bytes from 8.8.8.8: icmp_seq=3 ttl=117 time=5.15 ms     root@worker2:~# rdma link | grep ens1f0np0 link mlx5_0/1 state DOWN physical_state DISABLED netdev ens1f0np0

    5. Configure the ens1f0np0 interface on Ubuntu 24.04 using iproute2 .

      Configuration Overview

      Interface

      IP Address

      Default Gateway

      ens1f0np0

      10.0.121.9/29

      10.0.121.10/29

    First Pod Console

    Copy
    Copied!
                

    # Bring up physical interfaces root@worker2:~# ip link set dev ens1f0np0 up   # Assign IP addresses root@worker2:~# ip addr add 10.0.121.9/29 dev ens1f0np0   # Set default route root@worker2:~# ip route add default via 10.0.121.10 dev ens1f0np0

    iPerf TCP Bandwidth Test

    Move back to the first server console.

    1. Start the iperf3 server side:

      First BM Server Console

      Copy
      Copied!
                  

      root@worker1:~# iperf3 -s ------------------------------------------------------------ Server listening on TCP port 5001 TCP window size: 128 KByte (default) ------------------------------------------------------------

    2. Move to the second server console.

      Start the iperf client side:

      Second BM Server Console

      Copy
      Copied!
                  

      root@worker2:~# iperf3 -c 10.0.121.1 -P 16 ------------------------------------------------------------ Client connecting to 10.0.121.1, TCP port 5001 TCP window size: 16.0 KByte (default) ------------------------------------------------------------ [ 9] local 10.0.121.9 port 48620 connected with 10.0.121.1 port 5001 (icwnd/mss/irtt=14/1448/827) [ 10] local 10.0.121.9 port 48610 connected with 10.0.121.1 port 5001 (icwnd/mss/irtt=14/1448/881) [ 1] local 10.0.121.9 port 48712 connected with 10.0.121.1 port 5001 (icwnd/mss/irtt=14/1448/608) [ 14] local 10.0.121.9 port 48728 connected with 10.0.121.1 port 5001 (icwnd/mss/irtt=14/1448/722) [ 11] local 10.0.121.9 port 48710 connected with 10.0.121.1 port 5001 (icwnd/mss/irtt=14/1448/870) [ 4] local 10.0.121.9 port 48622 connected with 10.0.121.1 port 5001 (icwnd/mss/irtt=14/1448/945) [ 7] local 10.0.121.9 port 48690 connected with 10.0.121.1 port 5001 (icwnd/mss/irtt=14/1448/906) [ 15] local 10.0.121.9 port 48736 connected with 10.0.121.1 port 5001 (icwnd/mss/irtt=14/1448/689) [ 2] local 10.0.121.9 port 48616 connected with 10.0.121.1 port 5001 (icwnd/mss/irtt=14/1448/796) [ 3] local 10.0.121.9 port 48618 connected with 10.0.121.1 port 5001 (icwnd/mss/irtt=14/1448/940) [ 12] local 10.0.121.9 port 48706 connected with 10.0.121.1 port 5001 (icwnd/mss/irtt=14/1448/892) [ 16] local 10.0.121.9 port 48696 connected with 10.0.121.1 port 5001 (icwnd/mss/irtt=14/1448/810) [ 8] local 10.0.121.9 port 48626 connected with 10.0.121.1 port 5001 (icwnd/mss/irtt=14/1448/801) [ 6] local 10.0.121.9 port 48692 connected with 10.0.121.1 port 5001 (icwnd/mss/irtt=14/1448/891) [ 5] local 10.0.121.9 port 48624 connected with 10.0.121.1 port 5001 (icwnd/mss/irtt=14/1448/931) [ 13] local 10.0.121.9 port 48686 connected with 10.0.121.1 port 5001 (icwnd/mss/irtt=14/1448/903) [ ID] Interval Transfer Bandwidth [ 3] 0.0000-10.0058 sec 14.1 GBytes 12.1 Gbits/sec [ 13] 0.0000-10.0057 sec 14.2 GBytes 12.2 Gbits/sec [ 7] 0.0000-10.0056 sec 13.4 GBytes 11.5 Gbits/sec [ 12] 0.0000-10.0057 sec 15.2 GBytes 13.1 Gbits/sec [ 4] 0.0000-10.0058 sec 14.1 GBytes 12.1 Gbits/sec [ 11] 0.0000-10.0058 sec 15.8 GBytes 13.6 Gbits/sec [ 8] 0.0000-10.0057 sec 13.9 GBytes 11.9 Gbits/sec [ 9] 0.0000-10.0058 sec 13.8 GBytes 11.9 Gbits/sec [ 15] 0.0000-10.0057 sec 14.3 GBytes 12.3 Gbits/sec [ 16] 0.0000-10.0058 sec 14.6 GBytes 12.5 Gbits/sec [ 1] 0.0000-10.0057 sec 14.6 GBytes 12.6 Gbits/sec [ 6] 0.0000-10.0058 sec 13.1 GBytes 11.3 Gbits/sec [ 14] 0.0000-10.0059 sec 13.6 GBytes 11.6 Gbits/sec [ 10] 0.0000-10.0055 sec 13.5 GBytes 11.6 Gbits/sec [ 2] 0.0000-10.0057 sec 14.0 GBytes 12.0 Gbits/sec [ 5] 0.0000-10.0058 sec 14.6 GBytes 12.6 Gbits/sec [SUM] 0.0000-10.0010 sec 227 GBytes 195 Gbits/sec

    RoCE Latency Test

    Return to the first server console.

    1. Start the ib_read_lat server side:

      First BM Server Console

      Copy
      Copied!
                  

      root@worker1:~# ib_read_lat -F -n 20000 -d mlx5_0   ************************************ * Waiting for client to connect... * ************************************

    2. Move to the second server console.

      Start the ib_read_lat client side:

    Second BM Server Console

    Copy
    Copied!
                

    root@worker2:~# ib_read_lat -F -n 20000 -d mlx5_0 10.0.121.1   --------------------------------------------------------------------------------------- RDMA_Read Latency Test Dual-port : OFF Device : mlx5_0 Number of qps : 1 Transport type : IB Connection type : RC Using SRQ : OFF PCIe relax order: ON ibv_wr* API : ON TX depth : 1 Mtu : 1024[B] Link type : Ethernet GID index : 3 Outstand reads : 16 rdma_cm QPs : OFF Data ex. method : Ethernet --------------------------------------------------------------------------------------- local address: LID 0000 QPN 0x0048 PSN 0x77ae88 OUT 0x10 RKey 0x186ded VAddr 0x005fe0b3e3a000 GID: 00:00:00:00:00:00:00:00:00:00:255:255:10:00:121:09 remote address: LID 0000 QPN 0x0048 PSN 0x51948d OUT 0x10 RKey 0x186ded VAddr 0x00577584a67000 GID: 00:00:00:00:00:00:00:00:00:00:255:255:10:00:121:01 --------------------------------------------------------------------------------------- #bytes #iterations t_min[usec] t_max[usec] t_typical[usec] t_avg[usec] t_stdev[usec] 99% percentile[usec] 99.9% percentile[usec]  2 20000 3.98 65.30 4.08 7.89 7.17 31.51 36.33 ---------------------------------------------------------------------------------------

    RoCE Bandwidth Test

    Return to the first server console.

    1. Start the ib_write_bw server side:

      First BM Server Console

      Copy
      Copied!
                  

      root@worker1:~# ib_write_bw -s 1048576 -F -D 30 -q 64 -d mlx5_0   ************************************ * Waiting for client to connect... * ************************************

    2. Move to the second server console.

      Start the ib_write_bw client side:

      Second BM Server Console

      Copy
      Copied!
                  

      root@worker2:~# ib_write_bw -s 1048576 -F -D 30 -q 64 -d mlx5_0 10.0.121.1 --report_gbit  --------------------------------------------------------------------------------------- RDMA_Write BW Test Dual-port : OFF Device : mlx5_0 Number of qps : 64 Transport type : IB Connection type : RC Using SRQ : OFF PCIe relax order: ON ibv_wr* API : ON TX depth : 128 CQ Moderation : 1 Mtu : 1024[B] Link type : Ethernet GID index : 3 Max inline data : 0[B] rdma_cm QPs : OFF Data ex. method : Ethernet --------------------------------------------------------------------------------------- … --------------------------------------------------------------------------------------- #bytes #iterations BW peak[Gb/sec] BW average[Gb/sec] MsgRate[Mpps]  1048576 420000 0.00 220.72 0.026312 ---------------------------------------------------------------------------------------

    Network Isolation Test

    Finally, verify that the two servers running on different networks—using virtual functions on PF0 and PF0 can't communicate with each other.

    Connect to the first workload server, with the PF0 network, and try to ping the PF0 on second node .

    1. Run the ping commands from PF0 to PF0 :

      First BM Server Console

      Copy
      Copied!
                  

      root@worker1:~# ping -c 3 10.0.121.9 PING 10.0.121.9 (10.0.121.9) 56(84) bytes of data. 64 bytes from 10.0.121.9: icmp_seq=1 ttl=62 time=0.896 ms 64 bytes from 10.0.121.9: icmp_seq=2 ttl=62 time=0.241 ms 64 bytes from 10.0.121.9: icmp_seq=3 ttl=62 time=0.258 ms

    2. Try to ping the PF0 on nodes 3 and 4 . Run the ping commands from PF0 to PF0 :

      First BM Server Console

      Copy
      Copied!
                  

      root@worker1:~# ping -c 3 10.0.122.1 PING 10.0.122.1 (10.0.122.1) 56(84) bytes of data. From 10.0.121.2 icmp_seq=1 Destination Host Unreachable From 10.0.121.2 icmp_seq=2 Destination Host Unreachable From 10.0.121.2 icmp_seq=3 Destination Host Unreachable   --- 10.0.122.1 ping statistics --- 3 packets transmitted, 0 received, +3 errors, 100% packet loss, time 2045ms   root@worker1:~# ping -c 3 10.0.122.9 PING 10.0.122.9 (10.0.122.9) 56(84) bytes of data. From 10.0.121.2 icmp_seq=1 Destination Host Unreachable From 10.0.121.2 icmp_seq=2 Destination Host Unreachable From 10.0.121.2 icmp_seq=3 Destination Host Unreachable   --- 10.0.122.9 ping statistics --- 3 packets transmitted, 0 received, +3 errors, 100% packet loss, time 2067ms

    This ping operation should fail due to the network isolation implemented in HBN using different VLANs, VNIs and VRFs.

    DTS and BlueMan Services Verification

    Here's a step-by-step procedure to check the DTS and Blueman DPUServices were deployed on your NVIDIA BlueField DPU.

    To be able to log into BlueMan and view the local DTS instance data in a convenient way, the management IP address of the DPU should be entered to a web browser located in the same network as the DPU. In this RDG, it will be demonstrated by using RDP to connect to the Jump node and opening a web browser in it (same as with MaaS, Firewall).

    1. To find out the DPU management IP address in the 10.0.110.0/24 subnet, obtain the DPU names .

      Jump Node Console

      Copy
      Copied!
                  

      $ kubectl get dpus -n dpf-operator-system NAME READY PHASE AGE dpu-node-mt2402xz0f7x-mt2402xz0f7x True Ready 150m dpu-node-mt2402xz0f80-mt2402xz0f80 True Ready 150m dpu-node-mt2402xz0f8g-mt2402xz0f8g True Ready 150m dpu-node-mt2402xz0f9n-mt2402xz0f9n True Ready 150m dpu-node-mt2511600r8p-mt2511600r8p True Ready 70m dpu-node-mt2511600rc3-mt2511600rc3 True Ready 70m dpu-node-mt2511600rp1-mt2511600rp1 True Ready 70m dpu-node-mt2511600ruh-mt2511600ruh True Ready 70m

    2. Obtain the DPU management IP:

      Jump Node Console

      Copy
      Copied!
                  

      $ $ kubectl get dpus -n dpf-operator-system -o json \ | jq -r ' .items[] | "\(.metadata.name)\t\(.status.addresses[].address)" '   dpu-node-mt2402xz0f7x-mt2402xz0f7x 10.0.110.211 dpu-node-mt2402xz0f7x-mt2402xz0f7x dpu-node-mt2402xz0f7x-mt2402xz0f7x dpu-node-mt2402xz0f80-mt2402xz0f80 10.0.110.212 dpu-node-mt2402xz0f80-mt2402xz0f80 dpu-node-mt2402xz0f80-mt2402xz0f80 dpu-node-mt2402xz0f8g-mt2402xz0f8g 10.0.110.214 dpu-node-mt2402xz0f8g-mt2402xz0f8g dpu-node-mt2402xz0f8g-mt2402xz0f8g dpu-node-mt2402xz0f9n-mt2402xz0f9n 10.0.110.213 dpu-node-mt2402xz0f9n-mt2402xz0f9n dpu-node-mt2402xz0f9n-mt2402xz0f9n dpu-node-mt2511600r8p-mt2511600r8p 10.0.110.217 dpu-node-mt2511600r8p-mt2511600r8p dpu-node-mt2511600r8p-mt2511600r8p dpu-node-mt2511600rc3-mt2511600rc3 10.0.110.215 dpu-node-mt2511600rc3-mt2511600rc3 dpu-node-mt2511600rc3-mt2511600rc3 dpu-node-mt2511600rp1-mt2511600rp1 10.0.110.218 dpu-node-mt2511600rp1-mt2511600rp1 dpu-node-mt2511600rp1-mt2511600rp1 dpu-node-mt2511600ruh-mt2511600ruh 10.0.110.216 dpu-node-mt2511600ruh-mt2511600ruh dpu-node-mt2511600ruh-mt2511600ruh

    3. In the RDP session, open a web browser and enter https://<DPU_INTERNAL_IP>. A warning of self-signed certificate should appear; click accept the risk and proceed.

      Afterwards it will open the login page:

      image-2025-11-13_13-3-35-version-1-modificationdate-1763387867220-api-v2.png

      The login credentials to use are the same pair used for the SSH connection to the DPU ( ubuntu/ubuntu ). However, login straight away won't work and an additional certificate exception in the browser has to be made.

    4. Open another tab in the browser and enter https://<DPU_INTERNAL_IP>:10000. It will again prompt a warning of self-signed certificate; click accept the risk to add it to your browser exception list. An error message similar to the following will be displayed, but it doesn't matter since it's an internal address to fetch resources from–in other words, the error message can be ignored.

      image-2025-11-13_12-59-30-version-1-modificationdate-1763387868723-api-v2.png

    5. Return to the BlueMan login page, enter the credentials, and you should be able to login.

      image-2026-1-7_13-9-52-version-1-modificationdate-1767784192893-api-v2.png

    Done.

    Authors

    BK-version-2-modificationdate-1697457536297-api-v2.jpg

    Boris Kovalev

    Boris Kovalev has worked for the past several years as a Solutions Architect, focusing on NVIDIA Networking/Mellanox technology, and is responsible for complex machine learning, Big Data and advanced VMware-based cloud research and design. Boris previously spent more than 20 years as a senior consultant and solutions architect at multiple companies, most recently at VMware. He has written multiple reference designs covering VMware, machine learning, Kubernetes, and container solutions which are available at the NVIDIA Documents website.

    NVIDIA, the NVIDIA logo, and BlueField are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated. TM

    © 2025 NVIDIA Corporation. All rights reserved.

    This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality. NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice. Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete. NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

    Last updated on Jan 7, 2026