NVIDIA UFM Telemetry Documentation v1.15.7
NVIDIA UFM Telemetry Documentation v1.15.7

Software Management

Deploying UFM Telemetry can be done in the following modes:

Bare Metal - Bringup Mode

NVIDIA UFM Telemetry can be obtained as a tarball for installation on a Linux machine with all prerequisites installed.

To deploy the UFM Telemetry in Bringup mode, perform the following steps:

  1. Make sure the following prerequisites are installed:

    1. Python3

    2. Python3-venv

    3. Supervisor

  2. Copy the tarball package to the targeted location.

  3. Extract the package.

    Copy
    Copied!
                

    tar -xf ufm_telemetry-<version>.tar.gz

  4. Start collection.

    Copy
    Copied!
                

    ./bin/run_bringup .sh   CollectX: collection_start   This collects port counter and cable data every minute, uses HCA mlx5_0 and writes data to ./collection_data/clx-bringup-X for a period of 24hrs.   CollectX: help collection_start   Usage:   options                          defaults                        -------                          --------      collection_start  time|duration=n [s|m|h|d]        24h                        sample_rate=n [s|m|h|d]          60 seconds                        guids=[guid_list|guid_file]      None                        hca=hca_name                     mlx5_0                        cable|cable_info=[yes|no|once]   yes                        reset_counters=t                 false                        mads_retries=n                   2                        mads_timeout=n (msec)            500                        force_hca=t                      f

Docker Container Mode

NVIDIA UFM Telemetry is packaged as a docker image that should be loaded and deployed on a Linux machine with docker installed. This section describes how to deploy the UFM Telemetry docker image on a Linux machine.

To deploy the UFM telemetry, perform the following steps:

  1. Make sure that docker is installed on the Linux machine.

    Copy
    Copied!
                

    [root@r-ufm ~]# docker –version

  2. Start the docker service.

    Copy
    Copied!
                

    [root@r-ufm ~]# sudo service docker start

  3. Pull the image.

    Copy
    Copied!
                

    [root@r-ufm ~]# export image=mellanox/ufm-telemetry:<version> [root@r-ufm ~]# sudo docker pull $image

  4. Create the default .ini files and place them in the local directory mapped to /config in the container and initialize the container configuration.

    Copy
    Copied!
                

    root@r-ufm ~]# sudo docker run -v /opt/ufm-telemetry/conf:/config --rm -d $image /get_collectx_configs.sh "sample_rate=300;hca=mlx5_0;cable_info_schedule=1/00:00,3/00:00,5/00:00"

    Note

    This collects port counter data every 5 minutes and uses HCA mlx5_0. It also collects cable info on the 1st, 3rd, and 5th day of the week at midnight, where:

    • sample_rate: Frequency of collecting port counters

    • hca: Card to use

    • cable_info_schedule: Time of collecting cable info data (optional)

  5. Create a container of UFM telemetry.

    Copy
    Copied!
                

    root@r-ufm ~]# sudo docker run --net=host --uts=host --ipc=host \ --ulimit stack=67108864 --ulimit memlock=-1 \ --security-opt seccomp=unconfined --cap-add=SYS_ADMIN \ --device=/dev/infiniband/ -v "/opt/ufm-telemetry/conf:/config" -v "/tmp/data:/data" -v "/opt/ufm/files/licenses:/opt/ufm/files/licenses/" --rm --name ufm-telemetry -d $image

  6. Verify that UFM Telemetry is running.

    1. Make sure the UFM Telemetry container is up.

      Copy
      Copied!
                  

      [root@r-ufm ~]# docker ps

    2. If the container name exists, access the shell of the container.

      Copy
      Copied!
                  

      [root@r-ufm ~]# docker exec -it ufm-telemetry bash

    3. Review your configurations under /config/launch_ibdiagnet_config.ini.

  7. View the UFM Telemetry configuration files.

    Copy
    Copied!
                

    root@ r-ufm ~]# ls -l /config/ -rw-r--r-- 1 3478 101 396 Apr 15 21:04 clx_config.ini -rw-r--r-- 1 3478 101 2987 Apr 15 21:04 collectx.ini -rw-r--r-- 1 3478 101 4257 Apr 15 21:04 launch_ibdiagnet_config.ini -rw-r--r-- 1 3478 101 1912 Apr 16 12:03 supervisord.conf

  8. To watch and review the execution of the various components, you can check the log files under /var/log. Each component has a dedicated log file. Running the "ls -l" command will display all files under the folder. The following output shows only the relevant log files (other files have been omitted).

    Copy
    Copied!
                

    [root@r-ufm ~]# ls -l /var/log -rw-r--r-- 1 root root 128393 Apr 3 10:49 launch_cableinfo.log -rw-r--r-- 1 root root 467 Apr 3 09:35 launch_compression.log -rw-r--r-- 1 root root 194566 Apr 3 10:49 launch_ibdiagnet.log -rw-r--r-- 1 root root 798 Apr 3 09:35 launch_retention.log -rw-r--r-- 1 root root 1729 Apr 3 09:56 supervisord.log

  9. To exit the UFM Telemetry docker context, run "exit" to return to the Linux machine context.

  10. To access the UFM Telemetry CLI, run the following command on the Linux machine:

    Copy
    Copied!
                

    [root@r-ufm ~]# docker exec -it ufm-telemetry clxcli

  11. For settings and configuration instructions, see Settings and Configuration.

Docker Container Mode - High Availability

Requirements:

  • An important requirement for the HA solution is to prepare a dedicated partition for DRBD to work with. Example of such a requirement: /dev/sda4.

  • Install pcs and drbd-utils on both servers (using “yum” or “apt-get install”, based on your OS.

Note

On RH/CentOS, please run “yum install pcs drbd84-utils kmod-drbd84.

Procedure:

  1. Load (pull) the latest UFM Telemetry Docker image on both servers.

    Copy
    Copied!
                

    docker pull mellanox/ufm-telemetry:latest

  2. Run the Telemetry configuration command on both servers.

    Copy
    Copied!
                

    docker run --rm -i --name=config-telemetry \ -v /opt/ufm-telemetry/conf:/config \ -v /etc/systemd/system:/etc/systemd/system \ -v /var/run/docker.sock:/var/run/docker.sock \ mellanox/ufm-telemetry:latest \ /get_collectx_configs.sh \ --gen_service \ --config=ufm_telemetry

  3. Refresh systemd on both servers:

    Copy
    Copied!
                

    systemctl daemon-reload

  4. Create the /opt/ufm-telemetry/licenses/ directory on the master server and copy the UFM Telemetry license file there.

  5. Download UFM-HA Package on both servers from this link.

  6. Extract the HA package to /tmp/, and from there, run the installation command on both servers as follows:

    Note

    In the below commands, "disk", the partition name, is assumed as /dev/sda4.

    Copy
    Copied!
                

    ./install -l /opt/ufm-telemetry/ -d /dev/sda4 -p telemetry

  7. Run the UFM-HA configuration command ONLY on the master server, as follows:

    Copy
    Copied!
                

    configure_ha_nodes.sh \ --cluster-password 12345678 \ --master-ip 192.168.10.1 \ --standby-ip 192.168.10.2 \ --virtual-ip 192.168.10.5

    Note

    The cluster-password must be at least 8 characters long.

    Note

    Change the values of in the above command with your server' information.

  8. Start UFM Telemetry HA cluster. Run:

    Copy
    Copied!
                

    ufm_ha_cluster start

Bare Metal Mode

NVIDIA® UFM® Telemetry can be obtained as a tarball for installation on a Linux machine with all prerequisites installed.

To deploy the UFM Telemetry:

  1. Ensure the following prerequisites are installed:

    1. Python3

    2. Python3-venv

    3. Supervisor

  2. Copy the tarball package to the target location.

  3. Extract package.

    Copy
    Copied!
                

    tar -xf ufm_telemetry-<version>.tar.gz

  4. Initialize and configure.

    Copy
    Copied!
                

    ./bin/initialize_telemetry.sh --telemetry-dir /tmp/ufm_telemetry --config "hca=mlx5_0;sample_rate=300;data_dir=/tmp/clx_data;plugin_env_CLX_FILE_WRITE_ENABLED=1"

    Note

    This collects port counter data every 5 minutes, and uses HCA mlx5_0 and writes data to /tmp/clx_data.

  5. Start data collection.

    Copy
    Copied!
                

    supervisord --config /tmp/ufm_telemetry/conf/supervisord.conf

Bare Metal Mode - High Availability

NVIDIA® UFM® Telemetry can be obtained as a tarball for installation on a Linux machine with all prerequisites installed.

To deploy the UFM Telemetry:

  1. Ensure the following prerequisites are installed:

    1. Python3

    2. Python3-venv

    3. Supervisor

  2. Copy the tarball package to the target location.

  3. Extract package.

    Copy
    Copied!
                

    tar -xf ufm_telemetry -<version>.tar.gz

  4. Initialize and configure.

    Copy
    Copied!
                

    ./bin/initialize_telemetry.sh --telemetry-dir /tmp/ufm_telemetry --config "hca=mlx5_0;sample_rate=300;data_dir=/tmp/clx_data;plugin_env_CLX_FILE_WRITE_ENABLED=1" --gen_systemd_service

    Note

    This collects port counter data every 5 minutes, and uses HCA mlx5_0 and writes data to /tmp/clx_data.

  5. Download UFM-HA Package on both servers from this link.

  6. Extract the HA package to /tmp/, and from there, run the installation command on both servers as follows:

    Note

    In the below commands, "disk", the partition name, is assumed as /dev/sda4.

    Copy
    Copied!
                

    ./install -l /opt/ufm-telemetry/ -d /dev/sda4 -p telemetry

  7. Run the UFM-HA configuration command ONLY on the master server, as follows:

    Copy
    Copied!
                

    configure_ha_nodes.sh \ --cluster-password 12345678 \ --master-ip 192.168.10.1 \ --standby-ip 192.168.10.2 \ --virtual-ip 192.168.10.5

    Note

    The cluster-password must be at least 8 characters long.

    Note

    Change the values of in the above command with your server' information.

  8. Start UFM Telemetry HA cluster. Run:

    Copy
    Copied!
                

    ufm_ha_cluster start

To check the status of your UFM Telemetry HA cluster, run:

Copy
Copied!
            

ufm_ha_cluster status

To perform failover, run:

Copy
Copied!
            

ufm_ha_cluster failover

To perform takeover, run:

Copy
Copied!
            

ufm_ha_cluster takeover


Upgrading UFM Telemetry requires removing the previous package, pulling the new version of the UFM telemetry package, configuring the telemetry, and starting it from the new installation package.

The upgrade procedure can done in the three modes:

Bare Metal - Bringup Mode

  1. Stop previous collection. Run:

    Copy
    Copied!
                

    ./bin/run_bringup.sh CollectX: collection_stop

  2. Follow instructions described in Deploying UFM Telemetry - Bare Metal Mode with the new UFM Telemetry version.

  3. If needed, apply the previous configuration changes.

Docker Container Mode

  1. Stop the previous ufm-telemetry container.

    Copy
    Copied!
                

    [root@r-ufm ~]# docker stop ufm-telemetry

  2. Pull the new UFM Telemetry image.

    Copy
    Copied!
                

    [root@r-ufm ~]# export image=mellanox/ufm-telemetry:rhel7.3_x86_64_ofed5.1-2.3.7_release_1.6_latest [root@r-ufm ~]# docker pull $image

  3. Create a container for new UFM Telemetry.

    Copy
    Copied!
                

    [root@r-ufm ~]# docker run --net=host --uts=host --ipc=host \ --ulimit stack=67108864 --ulimit memlock=-1 \ --security-opt seccomp=unconfined --cap-add=SYS_ADMIN \ --device=/dev/infiniband/ -v "/opt/ufm-telemetry/conf:/config" -v "/tmp/data:/data" --rm --name ufm-telemetry -d $image

  4. Configure the UFM Telemetry based on the new configurations.

    Copy
    Copied!
                

    [root@r-ufm ~]# docker run -v /opt/ufm-telemetry/conf:/config --rm -d $image /get_collectx_configs.sh sample_rate=300;hca=mlx5_0;cable_info_schedule=1/00:00,3/00:00,5/00:00"

Bare Metal Mode

  1. Stop previous collection. Run:

    Copy
    Copied!
                

    kill $SUPERVISORD_PID # send sigterm to the supervisord proc

  2. Follow instructions described in Deploying UFM Telemetry - Bringup Mode with the new UFM Telemetry version.

  3. If needed, apply the previous configuration changes.

© Copyright 2024, NVIDIA. Last updated on Jul 8, 2024.