Prerequisites#
Supported Hardware#
The RFdiffusion NIM is configured to run on a single GPU. The minimum GPU memory requirement for the RFdiffusion NIM is 12GB. The RFdiffusion NIM should run on any NVIDIA GPU that meets this minimum hardware requirement and has compute capability >7.0. The RFdiffusion NIM also requires at least 15GB of free hard drive space.
Starting with 2.0 release of RFdiffusion NIM, the model is optimized using NVIDIA Warp and NVIDIA TensorRT frameworks, which allows the model to run up to two times faster as compared to non-optimized version. RFdiffusion NIM provides pre-compiled TensorRT engines for A100, A10g, L40 and H100 GPUs; when running on other GPUs, RFdiffusion NIM will build TensorRT engines at runtime.
Software Prerequisites#
Begin with Docker-supported operating system
Install Docker - minimum version: 23.0.1
Install NVIDIA Drivers - minimum version: 535
Install the NVIDIA Container Toolkit - minimum version: 1.13.5
Verify your container runtime supports NVIDIA GPUs by running
docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi
Example output:
+-----------------------------------------------------------------------------+ | NVIDIA-SMI 550.144.03 Driver Version: 550.144.03 CUDA Version: 12.4 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA GeForce ... Off | 00000000:01:00.0 Off | N/A | | 41% 30C P8 1W / 260W | 2244MiB / 11264MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| +-----------------------------------------------------------------------------+
Note
For more information on enumerating multi-GPU systems, please see the NVIDIA Container Toolkit’s GPU Enumeration Docs
NGC (NVIDIA GPU Cloud) Account#
Docker log in with your NGC API (enter the key as password when prompted.)
docker login nvcr.io --username='$oauthtoken'