NVIDIA NvNeural SDK  2022.2
GPU inference framework for NVIDIA Nsight Deep Learning Designer
LayerTypes.h File Reference

Interface types needed by layer objects. More...

Go to the source code of this file.

Classes

class  nvneural::IBypassLayer
 IBypassLayer is an optional interface that marks a layer as one that can potentially forward its input and be skipped. More...
 
class  nvneural::IConcatenationLayer
 IConcatenationLayer is an optional interface implemented by layers that marks them as concatenation layers. More...
 
class  nvneural::IConcatenationLayer2
 IConcatenationLayer2 is an optional interface implemented by layers that marks them as concatenation layers. More...
 
class  nvneural::IInnerActivationLayer
 IInnerActivationLayer is an optional interface implemented by layers that fuse pairs of operations. More...
 
class  nvneural::IInputLayer
 IInputLayer is an optional interface implemented by layers that marks them as input layers. More...
 
class  nvneural::ILayer
 ILayer is the base class for neural network layers. More...
 
class  nvneural::IRuntimeOptionsLayer
 IRuntimeOptionsLayer is an optional interface that marks a layer as one that uses runtime options. More...
 
class  nvneural::IStatusMessageLayer
 IStatusMessageLayer is an optional interface intended for ILayer to provide status messages. More...
 

Namespaces

 nvneural::runtimeoptionsattributes
 Enumeration describing the runtime options modifiers, see runtimeoptionstype.
 
 nvneural::runtimeoptionstype
 Enumeration describing the runtime options given to the host, see IRuntimeOptionsLayer.
 

Enumerations

enum class  nvneural::WeightsQuery : std::uint32_t { Required = 1 , Aligned = 2 }
 WeightsQuery describes the different types of queries for weights data. More...
 

Variables

const char *const nvneural::runtimeoptionstype::booltf = "boolTF"
 Requires nothing, sent "true" or "false".
 
const char *const nvneural::runtimeoptionsattributes::list = "list"
 Defines a list of string, ex. "list":["option_1", "option_2"].
 
const char *const nvneural::runtimeoptionsattributes::max = "max"
 Defines a max value, ex. "max":"1" or "max":"1.0".
 
const char *const nvneural::runtimeoptionsattributes::min = "min"
 Defines a min value, ex. "min":"0" or "min":"0.5".
 
const char *const nvneural::runtimeoptionstype::numfloat = "numFloat"
 Requires nothing, sent float.
 
const char *const nvneural::runtimeoptionstype::numint = "numInt"
 Requires nothing, sent int.
 
const char *const nvneural::runtimeoptionsattributes::step = "step"
 Defines a step value, ex. "step":"1" or "step":"0.5".
 
const char *const nvneural::runtimeoptionstype::stringlist = "stringList"
 Requires runtimeoptionsattributes::list, sent ordinal.
 
const char *const nvneural::runtimeoptionstype::textedit = "textEdit"
 Requires nothing, sent string.
 
const char *const nvneural::runtimeoptionstype::textlabel = "textLabel"
 Requires nothing, sent nothing, send string.
 
const char *const nvneural::runtimeoptionstype::trigger = "trigger"
 Requires nothing, sent empty string.
 

Detailed Description

Interface types needed by layer objects.

Enumeration Type Documentation

◆ WeightsQuery

enum nvneural::WeightsQuery : std::uint32_t
strong

WeightsQuery describes the different types of queries for weights data.

ILayer::weightsDimensions implementations passed an unknown weights query should return a zero-valued TensorDimension.

Enumerator
Required 

Represents the "official" dimensions expected from compatible weights.

    External weights data not matching this dimension may be rejected by the
    weights loader.

    Weights loaders such as FilesystemWeightsLoader may use this size to synthesize
    random weights for profiling or validation purposes. 
Aligned 

Represents the "actual" dimensions expected from compatible weights.

    During upload, network backends will automatically pad weights up to this size,
    allowing the kernels used by the layer implementations to assume aligned storage
    when performing inference.