Source code for physicsnemo.active_learning.loop

# SPDX-FileCopyrightText: Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import inspect
from pathlib import Path
from typing import Any

import torch
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.data import DataLoader
from tqdm import tqdm

from physicsnemo import Module
from physicsnemo.active_learning import protocols as p
from physicsnemo.distributed import DistributedManager
from physicsnemo.launch.logging import LaunchLogger
from physicsnemo.utils.capture import StaticCaptureEvaluateNoGrad, StaticCaptureTraining

__all__ = ["DefaultTrainingLoop"]


def _recursive_data_device_cast(
    data: Any,
    device: torch.device | str | None = None,
    dtype: torch.dtype | None = None,
    **kwargs: Any,
) -> Any:
    """
    Recursively moves/cast input data to a specified device and dtype.

    For iterable objects, we recurse through the elements depending on
    the type of iterable until we reach an object that either has a ``to``
    method that can be called, or just returns the data unchanged.

    Parameters
    ----------
    data: Any
        The data to move to the device.
    device: torch.device | str | None = None
        The device to move the data to.
    dtype: torch.dtype | None = None
        The dtype to move the data to.
    kwargs: Any
        Additional keyword arguments to pass to the `to` method.
        By default, `non_blocking` is set to `True` to allow
        asynchronous data transfers.

    Returns
    -------
    Any
        The data moved to the device.
    """
    kwargs.setdefault("non_blocking", True)
    if hasattr(data, "to"):
        # if there is a `to` method, then we can just call it
        return data.to(device=device, dtype=dtype, **kwargs)
    elif isinstance(data, dict):
        return {
            k: _recursive_data_device_cast(v, device, dtype) for k, v in data.items()
        }
    elif isinstance(data, list):
        return [_recursive_data_device_cast(v, device, dtype) for v in data]
    elif isinstance(data, tuple):
        return tuple(_recursive_data_device_cast(v, device, dtype) for v in data)
    else:
        return data


[docs] class DefaultTrainingLoop(p.TrainingLoop): """ Default implementation of the :class:`~physicsnemo.active_learning.protocols.TrainingLoop` protocol. This provides a functional training loop with support for static capture, progress bars, checkpointing, and distributed training. It implements the standard epoch-based training pattern with optional validation. See Also -------- TrainingLoop : Protocol specification for training loops Driver : Uses training loops in the training phase TrainingConfig : Configuration for training TrainingProtocol : Training step protocol ValidationProtocol : Validation step protocol """ def __new__(cls, *args: Any, **kwargs: Any) -> DefaultTrainingLoop: """ Wrapper for instantiating DefaultTrainingLoop. This method captures arguments used to instantiate the loop and stores them in the ``_args`` attribute for serialization. This follows the same pattern as :meth:`~physicsnemo.active_learning.protocols.ActiveLearningProtocol.__new__`. Parameters ---------- args: Any Arguments to pass to the loop's constructor. kwargs: Any Keyword arguments to pass to the loop's constructor. Returns ------- :class:`DefaultTrainingLoop` A new instance with an ``_args`` attribute for serialization. """ out = super().__new__(cls) # Get signature of __init__ function sig = inspect.signature(cls.__init__) # Bind args and kwargs to signature bound_args = sig.bind_partial( *([None] + list(args)), **kwargs ) # Add None to account for self bound_args.apply_defaults() # Get args and kwargs (excluding self and unroll kwargs) instantiate_args = {} for param, (k, v) in zip(sig.parameters.values(), bound_args.arguments.items()): # Skip self if k == "self": continue # Add args and kwargs to instantiate_args if param.kind == param.VAR_KEYWORD: instantiate_args.update(v) else: # Special handling for device: convert torch.device to string if k == "device" and isinstance(v, torch.device): instantiate_args[k] = str(v) # Special handling for dtype: convert to string representation elif k == "dtype" and isinstance(v, torch.dtype): instantiate_args[k] = str(v) else: instantiate_args[k] = v # Store args needed for instantiation out._args = { "__name__": cls.__name__, "__module__": cls.__module__, "__args__": instantiate_args, } return out def __init__( self, train_step_fn: p.TrainingProtocol | None = None, validate_step_fn: p.ValidationProtocol | None = None, enable_static_capture: bool = True, use_progress_bars: bool = True, device: str | torch.device | None = None, dtype: torch.dtype | None = None, checkpoint_frequency: int = 0, **capture_kwargs: Any, ) -> None: """ Initializes the default training loop. The general usage of this loop is to TODO: add support for early stopping Parameters ---------- train_step_fn: :class:`~physicsnemo.active_learning.protocols.TrainingProtocol` or None A callable that implements the logic for performing a single training step. See :class:`~physicsnemo.active_learning.protocols.TrainingProtocol` for the expected interface, but ultimately the function should return a scalar loss value that has a ``backward`` method. validate_step_fn: :class:`~physicsnemo.active_learning.protocols.ValidationProtocol` or None A callable that implements the logic for performing a single validation step. See :class:`~physicsnemo.active_learning.protocols.ValidationProtocol` for the expected interface, but in contrast to ``train_step_fn`` this function should not return anything. enable_static_capture: bool Whether to enable static capture for the training and validation steps. Defaults to True. use_progress_bars: bool Whether to show ``tqdm`` progress bars to display epoch and step progress. Defaults to True. device: str or `torch.device` or None The device used for performing the loop. If not provided, then the device will default to the model's device at runtime. dtype: `torch.dtype` or None The dtype used for performing the loop. If not provided, then the dtype will default to ``torch.get_default_dtype()``. checkpoint_frequency: int How often to save checkpoints during training (every N epochs). If 0, no checkpoints are saved during training. Set via :class:`~physicsnemo.active_learning.driver.Driver` before training execution. Defaults to 0. capture_kwargs: Any Additional keyword arguments to pass to the static capture decorators. """ self.train_step_fn = train_step_fn self.validate_step_fn = validate_step_fn self.enable_static_capture = enable_static_capture if isinstance(device, str): device = torch.device(device) # check to see if we can rely on DistributedManager if device is None and DistributedManager.is_initialized(): device = DistributedManager.device self.device = device if dtype is None: dtype = torch.get_default_dtype() self.dtype = dtype self.capture_kwargs = capture_kwargs self.use_progress_bars = use_progress_bars self.capture_functions = {} self.checkpoint_frequency = checkpoint_frequency self.checkpoint_base_dir: Path | None = None
[docs] def save_training_checkpoint( self, checkpoint_dir: Path, model: Module | p.LearnerProtocol, optimizer: Optimizer, lr_scheduler: _LRScheduler | None = None, training_epoch: int | None = None, ) -> None: """ Save training state to checkpoint directory. Model weights are saved separately. Optimizer, scheduler, and epoch metadata are combined into a single training_state.pt file. Parameters ---------- checkpoint_dir: :class:`pathlib.Path` Directory to save checkpoint files. model: :class:`~physicsnemo.Module` or :class:`~physicsnemo.active_learning.protocols.LearnerProtocol` Model to save weights for. optimizer: `Optimizer` Optimizer to save state from. lr_scheduler: `_LRScheduler` or None Optional LR scheduler to save state from. training_epoch: int or None Current training epoch for metadata. """ checkpoint_dir.mkdir(parents=True, exist_ok=True) # Save model weights separately if isinstance(model, Module): model_path = checkpoint_dir / "model.mdlus" model.save(str(model_path)) else: model_path = checkpoint_dir / "model_state.pt" torch.save(model.state_dict(), model_path) # Combine optimizer, scheduler, and epoch metadata into single file training_state = { "optimizer_state": optimizer.state_dict(), "lr_scheduler_state": lr_scheduler.state_dict() if lr_scheduler else None, "training_epoch": training_epoch, } training_state_path = checkpoint_dir / "training_state.pt" torch.save(training_state, training_state_path)
[docs] @staticmethod def load_training_checkpoint( checkpoint_dir: Path, model: Module | p.LearnerProtocol, optimizer: Optimizer, lr_scheduler: _LRScheduler | None = None, ) -> int | None: """ Load training state from checkpoint directory. Model weights are loaded separately. Optimizer, scheduler, and epoch metadata are loaded from the combined training_state.pt file. Parameters ---------- checkpoint_dir: :class:`pathlib.Path` Directory containing checkpoint files. model: :class:`~physicsnemo.Module` or :class:`~physicsnemo.active_learning.protocols.LearnerProtocol` Model to load weights into. optimizer: `Optimizer` Optimizer to load state into. lr_scheduler: `_LRScheduler` or None Optional LR scheduler to load state into. Returns ------- int or None Training epoch from metadata if available, else None. """ # Load model weights separately if isinstance(model, Module): model_path = checkpoint_dir / "model.mdlus" if model_path.exists(): model.load(str(model_path)) else: model_state_path = checkpoint_dir / "model_state.pt" if model_state_path.exists(): state_dict = torch.load(model_state_path, map_location="cpu") model.load_state_dict(state_dict) # Load combined training state (optimizer, scheduler, epoch) training_state_path = checkpoint_dir / "training_state.pt" if training_state_path.exists(): training_state = torch.load(training_state_path, map_location="cpu") # Restore optimizer state if "optimizer_state" in training_state: optimizer.load_state_dict(training_state["optimizer_state"]) # Restore scheduler state if present if lr_scheduler and training_state.get("lr_scheduler_state"): lr_scheduler.load_state_dict(training_state["lr_scheduler_state"]) # Return epoch metadata return training_state.get("training_epoch", None) return None
@property def amp_type(self) -> torch.dtype: if self.dtype in [torch.float16, torch.bfloat16]: return self.dtype else: return torch.float16 def _create_capture_functions( self, model: Module | p.LearnerProtocol, optimizer: Optimizer, train_step_fn: p.TrainingProtocol | None = None, validate_step_fn: p.ValidationProtocol | None = None, ) -> tuple[p.TrainingProtocol | None, p.ValidationProtocol | None]: """ Attempt to create static capture functions based off training and validation functions. This uses the Python object IDs to unique identify functions, and adds the decorated functions to an internal `capture_functions` dictionary. If the decorated functions already exist, then this function will be no-op. Parameters ---------- model: Module | p.LearnerProtocol The model to train. optimizer: Optimizer The optimizer to use for training. train_step_fn: p.TrainingProtocol | None = None The training function to use for training. validate_step_fn: p.ValidationProtocol | None = None The validation function to use for validation. Returns ------- tuple[p.TrainingProtocol | None, p.ValidationProtocol | None] The training and validation functions with static capture applied. """ if not train_step_fn: train_step_fn = self.train_step_fn train_func_id = id(train_step_fn) if train_func_id not in self.capture_functions: try: train_step_fn = StaticCaptureTraining( model=model, optim=optimizer, amp_type=self.amp_type, **self.capture_kwargs, )(train_step_fn) self.capture_functions[train_func_id] = train_step_fn except Exception as e: raise RuntimeError( "Failed to create static capture for `train_step_fn`. " ) from e else: train_step_fn = self.capture_functions[train_func_id] if not validate_step_fn: validate_step_fn = self.validate_step_fn if validate_step_fn: val_func_id = id(validate_step_fn) if val_func_id not in self.capture_functions: try: validate_step_fn = StaticCaptureEvaluateNoGrad( model=model, amp_type=self.amp_type, **self.capture_kwargs )(validate_step_fn) self.capture_functions[val_func_id] = validate_step_fn except Exception as e: raise RuntimeError( "Failed to create static capture for `validate_step_fn`. " ) from e else: validate_step_fn = self.capture_functions[val_func_id] return train_step_fn, validate_step_fn def __call__( self, model: Module | p.LearnerProtocol, optimizer: Optimizer, train_dataloader: DataLoader, max_epochs: int, validation_dataloader: DataLoader | None = None, train_step_fn: p.TrainingProtocol | None = None, validate_step_fn: p.ValidationProtocol | None = None, lr_scheduler: _LRScheduler | None = None, device: str | torch.device | None = None, dtype: torch.dtype | None = None, *args: Any, **kwargs: Any, ) -> None: """ Performs ``max_epochs`` epochs of training and optionally validation. Some of the arguments, such as ``train_step_fn`` and ``validate_step_fn``, are optional only if the ``model`` implements the ``p.LearnerProtocol``. If they are passed, however, they will take precedence over the methods originally provided to the constructor method. The bare minimum required arguments for this loop to work are: 1. A model to train 2. An optimizer to step 3. A training dataloader to iterate over 4. The maximum number of epochs to train for If validation is required, then both ``validation_dataloader`` and ``validate_step_fn`` must be specified. Parameters ---------- model: Module | p.LearnerProtocol The model to train. optimizer: torch.optim.Optimizer The optimizer to use for training. train_dataloader: DataLoader The dataloader to use for training. max_epochs: int The number of epochs to train for. validation_dataloader: DataLoader | None The dataloader to use for validation. If not provided, then validation will not be performed. train_step_fn: p.TrainingProtocol | None = None The training function to use for training. If passed, it will take precedence over the method provided to the constructor method. validate_step_fn: p.ValidationProtocol | None = None The validation function to use for validation. lr_scheduler: torch.optim.lr_scheduler._LRScheduler | None = None The learning rate scheduler to use for training. device: str | torch.device | None = None The device used for performing the loop. If provided, it will override the device specified in the constructor. If both values are not provided, then we default to PyTorch's default device. dtype: torch.dtype | None = None The dtype used for performing the loop. If provided, it will override the dtype specified in the constructor. If both values are not provided, then we default to PyTorch's default dtype. args: Any Additional arguments to pass the training and validation step functions. kwargs: Any Additional keyword arguments to pass the training and validation step functions. """ if not train_step_fn and not self.train_step_fn: raise RuntimeError( """ No training step function provided. Either provide a `train_step_fn` to this constructor, or provide a `train_step_fn` to the `__call__` method. """ ) if not device and not self.device: device = torch.get_default_device() if not dtype and not self.dtype: dtype = torch.get_default_dtype() # if a device is specified, move the model if device and device != model.device: # not 100% sure this will trigger issues with the optimizer # but allows a potentially different device to be used model = model.to(device) if self.enable_static_capture: # if static capture is enabled, we check for a cache hit based on # the incoming function IDs. If we miss, we then create new wrappers. train_step_fn, validate_step_fn = self._create_capture_functions( model, optimizer, train_step_fn, validate_step_fn ) epoch_iter = range(1, max_epochs + 1) if self.use_progress_bars: epoch_iter = tqdm(epoch_iter, desc="Epoch", leave=False, position=0) ########### EPOCH LOOP ########### for epoch in epoch_iter: model.train() train_iter = iter(train_dataloader) if self.use_progress_bars: train_iter = tqdm( train_iter, desc="Training step", leave=False, unit="batch" ) ########### TRAINING STEP LOOP ########### with LaunchLogger( "train", epoch=epoch, num_mini_batch=len(train_dataloader) ) as log: for batch in train_iter: batch = _recursive_data_device_cast( batch, device=device, dtype=dtype ) model.zero_grad(set_to_none=True) loss = train_step_fn(model, batch, *args, **kwargs) log.log_minibatch({"train_loss": loss.detach().item()}) # normally, static capture will call backward because of AMP if not self.enable_static_capture: loss.backward() optimizer.step() if lr_scheduler: lr_scheduler.step() ########### VALIDATION STEP LOOP ########### if validate_step_fn and validation_dataloader: model.eval() val_iter = iter(validation_dataloader) if self.use_progress_bars: val_iter = tqdm( val_iter, desc="Validation step", leave=False, unit="batch" ) with LaunchLogger( "validation", epoch=epoch, num_mini_batch=len(validation_dataloader) ) as log: for batch in val_iter: batch = _recursive_data_device_cast( batch, device=device, dtype=dtype ) validate_step_fn(model, batch, *args, **kwargs) ########### CHECKPOINT SAVE ########### # Save training state at specified frequency if self.checkpoint_base_dir and self.checkpoint_frequency > 0: if epoch % self.checkpoint_frequency == 0: epoch_checkpoint_dir = self.checkpoint_base_dir / f"epoch_{epoch}" self.save_training_checkpoint( checkpoint_dir=epoch_checkpoint_dir, model=model, optimizer=optimizer, lr_scheduler=lr_scheduler, training_epoch=epoch, )