Autoregressive Quickstart Guide#
This page will walk you through setting up and running inference with Cosmos-Predict1-4B, a pre-trained autoregressive model.
Set up the Autoregressive Model#
Ensure you have the necessary hardware and software, as outlined on the Prerequisites page.
Follow the Installation guide to download the Cosmos-Predict1 repo and set up the conda environment.
Generate a Hugging Face access token. Set the access token permission to ‘Read’ (the default permission is ‘Fine-grained’).
Log in to Hugging Face with the access token:
huggingface-cli login
Download the model weights for Cosmos-Predict1-4B from Hugging Face:
CUDA_HOME=$CONDA_PREFIX PYTHONPATH=$(pwd) python scripts/download_autoregressive_checkpoints.py --model_sizes 4B
Generate a Video using Video Input#
Generate a video using video or image input using the Cosmos-Predict1-4B model. The following example uses theinput.mp4
example video
as the --input_image_or_video_path
argument.
CUDA_HOME=$CONDA_PREFIX PYTHONPATH=$(pwd) python cosmos_predict1/autoregressive/inference/base.py \
--checkpoint_dir checkpoints \
--ar_model_dir Cosmos-Predict1-4B \
--input_type video \
--input_image_or_video_path assets/autoregressive/input.mp4 \
--top_p 0.8 \
--temperature 1.0 \
--offload_diffusion_decoder \
--offload_tokenizer \
--video_save_name autoregressive-4b
Next Steps#
Get started adapting an Autoregressive model for your use case with the Autoregressive Model Post-Training Guide or explore all autoregressive model input/output options in the Autoregressive Model Reference.