NVIDIA Modulus Core (Latest Release)
Core (Latest Release)

deeplearning/modulus/modulus-core/_modules/modulus/datapipes/gnn/ahmed_body_dataset.html

Source code for modulus.datapipes.gnn.ahmed_body_dataset

# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import concurrent.futures as cf
import logging
import os
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union

import numpy as np
import torch
import yaml
from torch import Tensor

from modulus.datapipes.datapipe import Datapipe
from modulus.datapipes.meta import DatapipeMetaData

from .utils import load_json, read_vtp_file, save_json

try:
    import dgl
    from dgl.data import DGLDataset
except ImportError:
    raise ImportError(
        "Ahmed Body Dataset requires the DGL library. Install the "
        + "desired CUDA version at: \n https://www.dgl.ai/pages/start.html"
    )

try:
    import pyvista as pv
    import vtk
except ImportError:
    raise ImportError(
        "Ahmed Body Dataset requires the vtk and pyvista libraries. Install with "
        + "pip install vtk pyvista"
    )

logger = logging.getLogger(__name__)


[docs]@dataclass class FileInfo: """VTP file info storage.""" velocity: float reynolds_number: float length: float width: float height: float ground_clearance: float slant_angle: float fillet_radius: float
[docs]@dataclass class MetaData(DatapipeMetaData): name: str = "AhmedBody" # Optimization auto_device: bool = True cuda_graphs: bool = False # Parallel ddp_sharding: bool = True
[docs]class AhmedBodyDataset(DGLDataset, Datapipe): """ In-memory Ahmed body Dataset Parameters ---------- data_dir: str The directory where the data is stored. split: str, optional The dataset split. Can be 'train', 'validation', or 'test', by default 'train'. num_samples: int, optional The number of samples to use, by default 10. invar_keys: Iterable[str], optional The input node features to consider. Default includes 'pos', 'velocity', 'reynolds_number', 'length', 'width', 'height', 'ground_clearance', 'slant_angle', and 'fillet_radius'. outvar_keys: Iterable[str], optional The output features to consider. Default includes 'p' and 'wallShearStress'. normalize_keys Iterable[str], optional The features to normalize. Default includes 'p', 'wallShearStress', 'velocity', 'length', 'width', 'height', 'ground_clearance', 'slant_angle', and 'fillet_radius'. normalization_bound: Tuple[float, float], optional The lower and upper bounds for normalization. Default is (-1, 1). force_reload: bool, optional If True, forces a reload of the data, by default False. name: str, optional The name of the dataset, by default 'dataset'. verbose: bool, optional If True, enables verbose mode, by default False. compute_drag: bool, optional If True, also returns the coefficient and mesh area and normals that are required for computing the drag coefficient. num_workers: int, optional Number of dataset pre-loading workers. If None, will be chosen automatically. """ def __init__( self, data_dir: str, split: str = "train", num_samples: int = 10, invar_keys: Iterable[str] = ( "pos", "velocity", "reynolds_number", "length", "width", "height", "ground_clearance", "slant_angle", "fillet_radius", ), outvar_keys: Iterable[str] = ("p", "wallShearStress"), normalize_keys: Iterable[str] = ( "p", "wallShearStress", "velocity", "reynolds_number", "length", "width", "height", "ground_clearance", "slant_angle", "fillet_radius", ), normalization_bound: Tuple[float, float] = (-1.0, 1.0), force_reload: bool = False, name: str = "dataset", verbose: bool = False, compute_drag: bool = False, num_workers: Optional[int] = None, ): DGLDataset.__init__( self, name=name, force_reload=force_reload, verbose=verbose, ) Datapipe.__init__( self, meta=MetaData(), ) self.split = split self.num_samples = num_samples data_dir = Path(data_dir) self.data_dir = data_dir / self.split if not self.data_dir.is_dir(): raise IOError(f"Directory not found {self.data_dir}") self.info_dir = data_dir / (self.split + "_info") if not self.info_dir.is_dir(): raise IOError(f"Directory not found {self.info_dir}") self.input_keys = list(invar_keys) self.output_keys = list(outvar_keys) self.normalize_keys = list(normalize_keys) self.normalization_bound = normalization_bound self.compute_drag = compute_drag # Get case ids from the list of .vtp files. case_files = [] case_info_files = [] self.case_ids = [] for case_file in sorted(self.data_dir.glob("*.vtp")): case_id = int(str(case_file.stem).removeprefix("case")) # Check if there is a corresponding info file. case_info_file = self.info_dir / f"case{case_id}_info.txt" if not case_info_file.is_file(): raise IOError(f"File not found {case_info_file}") case_files.append(str(case_file)) case_info_files.append(str(case_info_file)) self.case_ids.append(case_id) self.length = min(len(self.case_ids), self.num_samples) logging.info(f"Using {self.length} {split} samples.") if self.num_samples > self.length: raise ValueError( f"Number of available {self.split} dataset entries " f"({self.length}) is less than the number of samples " f"({self.num_samples})" ) self.graphs = [None] * self.length if self.compute_drag: self.normals = [None] * self.length self.areas = [None] * self.length self.coeff = [None] * self.length # create graphs from VTP files using multiprocessing. if num_workers is None or num_workers <= 0: def get_num_workers(): # Make sure we don't oversubscribe CPUs on a node. # TODO(akamenev): this should be in DistributedManager. local_node_size = max( int(os.environ.get("OMPI_COMM_WORLD_LOCAL_SIZE", 1)), 1 ) num_workers = len(os.sched_getaffinity(0)) // local_node_size return max(num_workers - 1, 1) num_workers = get_num_workers() with cf.ProcessPoolExecutor( max_workers=num_workers, mp_context=torch.multiprocessing.get_context("spawn"), ) as executor: for (i, graph, coeff, normal, area) in executor.map( self.create_graph, range(self.length), case_files[: self.length], case_info_files[: self.length], chunksize=max(1, self.length // num_workers), ): self.graphs[i] = graph if self.compute_drag: self.coeff[i] = coeff self.normals[i] = normal self.areas[i] = area # add the edge features self.graphs = self.add_edge_features() # normalize the node and edge features if self.split == "train": self.node_stats = self._get_node_stats(keys=self.normalize_keys) self.edge_stats = self._get_edge_stats() else: if not os.path.exists("node_stats.json"): raise FileNotFoundError( "node_stats.json not found! Node stats must be computed on the training set." ) if not os.path.exists("edge_stats.json"): raise FileNotFoundError( "edge_stats.json not found! Edge stats must be computed on the training set." ) self.node_stats = load_json("node_stats.json") self.edge_stats = load_json("edge_stats.json") self.graphs = self.normalize_node() self.graphs = self.normalize_edge()
[docs] def create_graph(self, index: int, file_path: str, info_path: str) -> None: """Creates a graph from VTP file. This method is used in parallel loading of graphs. Returns ------- Tuple that contains graph index, graph, and optionally coeff, normal and area values. """ polydata = read_vtp_file(file_path) graph = self._create_dgl_graph(polydata, self.output_keys, dtype=torch.int32) info = self._read_info_file(info_path) for v in vars(info): if v not in self.input_keys: continue graph.ndata[v] = getattr(info, v) * torch.ones_like( graph.ndata["pos"][:, [0]] ) coeff = None normal = None area = None if "normals" in self.input_keys or self.compute_drag: mesh = pv.read(file_path) mesh.compute_normals(cell_normals=True, point_normals=False, inplace=True) if "normals" in self.input_keys: graph.ndata["normals"] = torch.from_numpy( mesh.cell_data_to_point_data()["Normals"] ) if self.compute_drag: mesh = mesh.compute_cell_sizes() mesh = mesh.cell_data_to_point_data() frontal_area = info.width * info.height / 2 * (10 ** (-6)) coeff = 2.0 / ((info.velocity**2) * frontal_area) normal = torch.from_numpy(mesh["Normals"]) area = torch.from_numpy(mesh["Area"]) return index, graph, coeff, normal, area

def __getitem__(self, idx): graph = self.graphs[idx] if self.compute_drag: case_id = self.case_ids[idx] return graph, case_id, self.normals[idx], self.areas[idx], self.coeff[idx] return graph def __len__(self): return self.length

[docs] def add_edge_features(self) -> List[dgl.DGLGraph]: """ Add relative displacement and displacement norm as edge features for each graph in the list of graphs. The calculations are done using the 'pos' attribute in the node data of each graph. The resulting edge features are stored in the 'x' attribute in the edge data of each graph. This method will modify the list of graphs in-place. Returns ------- List[dgl.DGLGraph] The list of graphs with updated edge features. """ if not hasattr(self, "graphs") or not self.graphs: raise ValueError("The list 'graphs' is empty.") for graph in self.graphs: pos = graph.ndata.get("pos") if pos is None: raise ValueError( "'pos' does not exist in the node data of one or more graphs." ) row, col = graph.edges() row = row.long() col = col.long() disp = pos[row] - pos[col] disp_norm = torch.linalg.norm(disp, dim=-1, keepdim=True) graph.edata["x"] = torch.cat((disp, disp_norm), dim=-1) return self.graphs
[docs] def normalize_node(self) -> List[dgl.DGLGraph]: """ Normalize node data in each graph in the list of graphs. Returns ------- List[dgl.DGLGraph] The list of graphs with normalized and concatenated node data. """ if not hasattr(self, "graphs") or not self.graphs: raise ValueError("The list 'graphs' is empty.") if not hasattr(self, "node_stats") or not isinstance(self.node_stats, dict): raise ValueError( "The 'node_stats' attribute does not exist or is not a dictionary." ) invar_keys = set( [ key.replace("_mean", "").replace("_std", "") for key in self.node_stats.keys() ] ) for i in range(len(self.graphs)): for key in invar_keys: self.graphs[i].ndata[key] = ( self.graphs[i].ndata[key] - self.node_stats[key + "_mean"] ) / self.node_stats[key + "_std"] self.graphs[i].ndata["x"] = torch.cat( [self.graphs[i].ndata[key] for key in self.input_keys], dim=-1 ) self.graphs[i].ndata["y"] = torch.cat( [self.graphs[i].ndata[key] for key in self.output_keys], dim=-1 ) return self.graphs
[docs] def normalize_edge(self) -> List[dgl.DGLGraph]: """ Normalize edge data 'x' in each graph in the list of graphs. Returns ------- List[dgl.DGLGraph] The list of graphs with normalized edge data 'x'. """ if not hasattr(self, "graphs") or not self.graphs: raise ValueError("The list 'graphs' is empty.") if not hasattr(self, "edge_stats") or not isinstance(self.edge_stats, dict): raise ValueError( "The 'edge_stats' attribute does not exist or is not a dictionary." ) for i in range(len(self.graphs)): self.graphs[i].edata["x"] = ( self.graphs[i].edata["x"] - self.edge_stats["edge_mean"] ) / self.edge_stats["edge_std"] return self.graphs
[docs] def denormalize(self, pred, gt, device) -> Tuple[Tensor, Tensor]: """ Denormalize the graph node data. Parameters ----------- pred: Tensor Normalized prediction gt: Tensor Normalized ground truth device: Any The device Returns -------- Tuple(Tensor, Tensor) Denormalized prediction and ground truth """ stats = self.node_stats stats = {key: val.to(device) for key, val in stats.items()} p_pred = pred[:, [0]] s_pred = pred[:, 1:] p_gt = gt[:, [0]] s_gt = gt[:, 1:] p_pred = p_pred * stats["p_std"] + stats["p_mean"] s_pred = s_pred * stats["wallShearStress_std"] + stats["wallShearStress_mean"] p_gt = p_gt * stats["p_std"] + stats["p_mean"] s_gt = s_gt * stats["wallShearStress_std"] + stats["wallShearStress_mean"] pred = torch.cat((p_pred, s_pred), dim=-1) gt = torch.cat((p_gt, s_gt), dim=-1) return pred, gt

def _get_edge_stats(self) -> Dict[str, Any]: """ Computes the mean and standard deviation of each edge attribute 'x' in the graphs, and saves to a JSON file. Returns ------- dict A dictionary with keys 'edge_mean' and 'edge_std' and the corresponding values being 1-D tensors containing the mean or standard deviation value for each dimension of the edge attribute 'x'. """ if not self.graphs: raise ValueError("The list 'graphs' is empty.") stats = { "edge_mean": 0, "edge_meansqr": 0, } for i in range(self.length): stats["edge_mean"] += ( torch.mean(self.graphs[i].edata["x"], dim=0) / self.length ) stats["edge_meansqr"] += ( torch.mean(torch.square(self.graphs[i].edata["x"]), dim=0) / self.length ) stats["edge_std"] = torch.sqrt( stats["edge_meansqr"] - torch.square(stats["edge_mean"]) ) stats.pop("edge_meansqr") # save to file save_json(stats, "edge_stats.json") return stats def _get_node_stats(self, keys: List[str]) -> Dict[str, Any]: """ Computes the mean and standard deviation values of each node attribute for the list of keys in the graphs, and saves to a JSON file. Parameters ---------- keys : list of str List of keys for the node attributes. Returns ------- dict A dictionary with each key being a string of format '[key]_mean' or '[key]_std' and each value being a 1-D tensor containing the mean or standard deviation for each dimension of the node attribute. """ if not self.graphs: raise ValueError("The list 'graphs' is empty.") stats = {} for key in keys: stats[key + "_mean"] = 0 stats[key + "_meansqr"] = 0 for i in range(self.length): for key in keys: stats[key + "_mean"] += ( torch.mean(self.graphs[i].ndata[key], dim=0) / self.length ) stats[key + "_meansqr"] += ( torch.mean(torch.square(self.graphs[i].ndata[key]), dim=0) / self.length ) for key in keys: stats[key + "_std"] = torch.sqrt( stats[key + "_meansqr"] - torch.square(stats[key + "_mean"]) ) stats.pop(key + "_meansqr") # save to file save_json(stats, "node_stats.json") return stats @staticmethod def _read_info_file(file_path: str) -> FileInfo: """ Parse the values of specific parameters from a given text file. Parameters ---------- file_path : str Path to the text file. Returns ------- FileInfo A FileInfo object. """ with open(file_path, mode="rt", encoding="utf-8") as file: info = yaml.safe_load(file) return FileInfo( info["Velocity"], info["Re (based on length)"], info["Length"], info["Width"], info["Height"], info["GroundClearance"], info["SlantAngle"], info["FilletRadius"], ) @staticmethod def _create_dgl_graph( polydata: Any, outvar_keys: List[str], to_bidirected: bool = True, add_self_loop: bool = False, dtype: Union[torch.dtype, str] = torch.int32, ) -> dgl.DGLGraph: """ Create a DGL graph from vtkPolyData. Parameters ---------- polydata : vtkPolyData vtkPolyData from which the DGL graph is created. outvar_keys : list of str List of keys for the node attributes to be extracted from the vtkPolyData. to_bidirected : bool, optional Whether to make the graph bidirected. Default is True. add_self_loop : bool, optional Whether to add self-loops in the graph. Default is False. dtype : torch.dtype or str, optional Data type for the graph. Default is torch.int32. Returns ------- dgl.DGLGraph The DGL graph created from the vtkPolyData. """ # Extract point data and connectivity information from the vtkPolyData points = polydata.GetPoints() if points is None: raise ValueError("Failed to get points from the polydata.") vertices = np.array( [points.GetPoint(i) for i in range(points.GetNumberOfPoints())] ) polys = polydata.GetPolys() if polys is None: raise ValueError("Failed to get polygons from the polydata.") polys.InitTraversal() edge_list = [] for i in range(polys.GetNumberOfCells()): id_list = vtk.vtkIdList() polys.GetNextCell(id_list) for j in range(id_list.GetNumberOfIds() - 1): edge_list.append( # noqa: PERF401 (id_list.GetId(j), id_list.GetId(j + 1)) ) # Create DGL graph using the connectivity information graph = dgl.graph(edge_list, idtype=dtype) if to_bidirected: graph = dgl.to_bidirected(graph) if add_self_loop: graph = dgl.add_self_loop(graph) # Assign node features using the vertex data graph.ndata["pos"] = torch.tensor(vertices, dtype=torch.float32) # Extract node attributes from the vtkPolyData point_data = polydata.GetPointData() if point_data is None: raise ValueError("Failed to get point data from the polydata.") for i in range(point_data.GetNumberOfArrays()): array = point_data.GetArray(i) array_name = array.GetName() if array_name in outvar_keys: array_data = np.zeros( (points.GetNumberOfPoints(), array.GetNumberOfComponents()) ) for j in range(points.GetNumberOfPoints()): array.GetTuple(j, array_data[j]) # Assign node attributes to the DGL graph graph.ndata[array_name] = torch.tensor(array_data, dtype=torch.float32) return graph

© Copyright 2023, NVIDIA Modulus Team. Last updated on Sep 24, 2024.