# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from modulus.distributed.manager import DistributedManager
from modulus.distributed.utils import (
_reduce,
_split,
all_gather_v_wrapper,
compute_split_shapes,
)
class _CopyToParallelRegion(torch.autograd.Function):
"""Pass the input to the parallel region"""
@staticmethod
def symbolic(graph, input_, group_): # pragma: no cover
return input_
@staticmethod
def forward(ctx, input_, group_): # pragma: no cover
ctx.group = group_
return input_
@staticmethod
def backward(ctx, grad_output): # pragma: no cover
return _reduce(grad_output, group=DistributedManager().group(ctx.group)), None
class _ReduceFromParallelRegion(torch.autograd.Function):
"""All-reduce the input from the parallel region"""
@staticmethod
def symbolic(graph, input_, group_): # pragma: no cover
return _reduce(input_, group=DistributedManager().group(group_))
@staticmethod
def forward(ctx, input_, group_): # pragma: no cover
return _reduce(input_, group=DistributedManager().group(group_))
@staticmethod
def backward(ctx, grad_output): # pragma: no cover
return grad_output, None
class _ScatterToParallelRegion(torch.autograd.Function):
"""Split the input and keep only the chunk corresponding to the rank."""
@staticmethod
def symbolic(graph, input_, dim_, group_): # pragma: no cover
return _split(input_, dim_, group=DistributedManager().group(group_))
@staticmethod
def forward(ctx, input_, dim_, group_): # pragma: no cover
ctx.dim = dim_
ctx.group = group_
ctx.split_shapes = compute_split_shapes(
input_.shape[dim_], DistributedManager().group_size(group_)
)
return _split(input_, dim_, group=DistributedManager().group(group_))
@staticmethod
def backward(ctx, grad_output): # pragma: no cover
return (
all_gather_v_wrapper(
grad_output,
ctx.split_shapes,
ctx.dim,
group=DistributedManager().group(ctx.group),
),
None,
None,
)
class _GatherFromParallelRegion(torch.autograd.Function):
"""Gather the input from parallel region and concatenate."""
@staticmethod
def symbolic(graph, input_, dim_, group_, shapes_): # pragma: no cover
return all_gather_v_wrapper(
input_, shapes_, dim_, group=DistributedManager().group(group_)
)
@staticmethod
def forward(ctx, input_, dim_, shapes_, group_): # pragma: no cover
ctx.dim = dim_
ctx.group = group_
return all_gather_v_wrapper(
input_, shapes_, dim_, group=DistributedManager().group(group_)
)
@staticmethod
def backward(ctx, grad_output): # pragma: no cover
return (
_split(grad_output, ctx.dim, group=DistributedManager().group(ctx.group)),
None,
None,
None,
)
# -----------------
# Helper functions.
# -----------------
[docs]def copy_to_parallel_region(input, group): # pragma: no cover
"""Copy input"""
return _CopyToParallelRegion.apply(input, group)
[docs]def reduce_from_parallel_region(input, group): # pragma: no cover
"""All-reduce the input from the matmul parallel region."""
return _ReduceFromParallelRegion.apply(input, group)
[docs]def scatter_to_parallel_region(input, dim, group): # pragma: no cover
"""Split the input and keep only the corresponding chuck to the rank."""
return _ScatterToParallelRegion.apply(input, dim, group)
[docs]def gather_from_parallel_region(input, dim, shapes, group): # pragma: no cover
"""Gather the input from matmul parallel region and concatenate."""
return _GatherFromParallelRegion.apply(input, dim, shapes, group)