deeplearning/modulus/modulus-core/_modules/modulus/launch/logging/launch.html
Source code for modulus.launch.logging.launch
# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import sys
import time
from os import getcwd, makedirs
from os.path import abspath, exists, join
from typing import Dict, Tuple, Union
import torch
import torch.cuda.profiler as profiler
import wandb
from modulus.distributed import DistributedManager, reduce_loss
from .console import PythonLogger
from .wandb import alert
[docs]class LaunchLogger(object):
"""Modulus Launch logger
An abstracted logger class that takes care of several fundamental logging functions.
This class should first be initialized and then used via a context manager. This will
auto compute epoch metrics. This is the standard logger for Modulus examples.
Parameters
----------
name_space : str
Namespace of logger to use. This will define the loggers title in the console and
the wandb group the metric is plotted
epoch : int, optional
Current epoch, by default 1
num_mini_batch : Union[int, None], optional
Number of mini-batches used to calculate the epochs progress, by default None
profile : bool, optional
Profile code using nvtx markers, by default False
mini_batch_log_freq : int, optional
Frequency to log mini-batch losses, by default 100
epoch_alert_freq : Union[int, None], optional
Epoch frequency to send training alert, by default None
Example
-------
>>> from modulus.launch.logging import LaunchLogger
>>> LaunchLogger.initialize()
>>> epochs = 3
>>> for i in range(epochs):
... with LaunchLogger("Train", epoch=i) as log:
... # Log 3 mini-batches manually
... log.log_minibatch({"loss": 1.0})
... log.log_minibatch({"loss": 2.0})
... log.log_minibatch({"loss": 3.0})
"""
_instances = {}
console_backend = True
wandb_backend = False
mlflow_backend = False
tensorboard_backend = False
enable_profiling = False
mlflow_run = None
mlflow_client = None
def __new__(cls, name_space, *args, **kwargs):
# If namespace already has an instance just return that
if name_space in cls._instances:
return cls._instances[name_space]
# Otherwise create new singleton instance for this namespace
self = super().__new__(cls) # don't pass remaining parameters to object.__new__
cls._instances[name_space] = self
# Constructor set up to only be ran once by a logger
self.pyLogger = PythonLogger(name_space)
self.total_iteration_index = None
# Distributed
self.root = True
if DistributedManager.is_initialized():
self.root = DistributedManager().rank == 0
# Profiler utils
if torch.cuda.is_available():
self.profiler = torch.autograd.profiler.emit_nvtx(
enabled=cls.enable_profiling
)
self.start_event = torch.cuda.Event(enable_timing=True)
self.end_event = torch.cuda.Event(enable_timing=True)
else:
self.profiler = None
return self
def __init__(
self,
name_space: str,
epoch: int = 1,
num_mini_batch: Union[int, None] = None,
profile: bool = False,
mini_batch_log_freq: int = 100,
epoch_alert_freq: Union[int, None] = None,
):
self.name_space = name_space
self.mini_batch_index = 0
self.minibatch_losses = {}
self.epoch_losses = {}
self.mini_batch_log_freq = mini_batch_log_freq
self.epoch_alert_freq = epoch_alert_freq
self.epoch = epoch
self.num_mini_batch = num_mini_batch
self.profile = profile
# Init initial iteration based on current epoch
if self.total_iteration_index is None:
if num_mini_batch is not None:
self.total_iteration_index = (epoch - 1) * num_mini_batch
else:
self.total_iteration_index = 0
# Set x axis metric to epoch for this namespace
if self.wandb_backend:
wandb.define_metric(name_space + "/mini_batch_*", step_metric="iter")
wandb.define_metric(name_space + "/*", step_metric="epoch")
[docs] def log_minibatch(self, losses: Dict[str, float]):
"""Logs metrics for a mini-batch epoch
This function should be called every mini-batch iteration. It will accumulate
loss values over a datapipe. At the end of a epoch the average of these losses
from each mini-batch will get calculated.
Parameters
----------
losses : Dict[str, float]
Dictionary of metrics/loss values to log
"""
self.mini_batch_index += 1
self.total_iteration_index += 1
for name, value in losses.items():
if name not in self.minibatch_losses:
self.minibatch_losses[name] = 0
self.minibatch_losses[name] += value
# Log of mini-batch loss
if self.mini_batch_index % self.mini_batch_log_freq == 0:
# Backend Logging
mini_batch_metrics = {}
for name, value in losses.items():
mini_batch_metrics[f"{self.name_space}/mini_batch_{name}"] = value
self._log_backends(
mini_batch_metrics, step=("iter", self.total_iteration_index)
)
# Console
if self.root:
message = "Mini-Batch Losses:"
for name, value in losses.items():
message += f" {name} = {value:10.3e},"
message = message[:-1]
# If we have datapipe length we can get a percent complete
if self.num_mini_batch:
mbp = 100 * (float(self.mini_batch_index) / self.num_mini_batch)
message = f"[{mbp:.02f}%] " + message
self.pyLogger.log(message)
[docs] def log_epoch(self, losses: Dict[str, float]):
"""Logs metrics for a single epoch
Parameters
----------
losses : Dict[str, float]
Dictionary of metrics/loss values to log
"""
for name, value in losses.items():
self.epoch_losses[name] = valuedef __enter__(self):
self.mini_batch_index = 0
self.minibatch_losses = {}
self.epoch_losses = {}
# Trigger profiling
if self.profile and self.profiler:
self.logger.warning(f"Starting profile for epoch {self.epoch}")
self.profiler.__enter__()
profiler.start()
# Timing stuff
if torch.cuda.is_available():
self.start_event.record()
else:
self.start_event = time.time()
if self.mlflow_backend:
self.mlflow_client.update_run(self.mlflow_run.info.run_id, "RUNNING")
return self
def __exit__(self, exc_type, exc_value, exc_tb):
# Abnormal exit dont log
if exc_type is not None:
if self.mlflow_backend:
self.mlflow_client.set_terminated(
self.mlflow_run.info.run_id, status="KILLED"
)
return
# Reduce mini-batch losses
for name, value in self.minibatch_losses.items():
process_loss = value / self.mini_batch_index
self.epoch_losses[name] = process_loss
# Compute global loss
if DistributedManager.is_initialized() and DistributedManager().distributed:
self.epoch_losses[name] = reduce_loss(process_loss)
if self.root:
# Console printing
# TODO: add out of total epochs progress
message = f"Epoch {self.epoch} Metrics:"
for name, value in self.epoch_losses.items():
message += f" {name} = {value:10.3e},"
message = message[:-1]
self.pyLogger.info(message)
metrics = {
f"{self.name_space}/{key}": value
for key, value in self.epoch_losses.items()
}
# Exit profiling
if self.profile and self.profiler:
self.logger.warning("Ending profile")
self.profiler.__exit__()
profiler.end()
# Timing stuff, TODO: histograms not line plots
if torch.cuda.is_available():
self.end_event.record()
torch.cuda.synchronize()
# Returns milliseconds
# https://pytorch.org/docs/stable/generated/torch.cuda.Event.html#torch.cuda.Event.elapsed_time
epoch_time = self.start_event.elapsed_time(self.end_event) / 1000.0
else:
end_event = time.time()
epoch_time = end_event - self.start_event
# Return MS for time / iter
time_per_iter = 1000 * epoch_time / max([1, self.mini_batch_index])
if self.root:
message = f"Epoch Execution Time: {epoch_time:10.3e}s"
message += f", Time/Iter: {time_per_iter:10.3e}ms"
self.pyLogger.info(message)
metrics[f"{self.name_space}/Epoch Time (s)"] = epoch_time
metrics[f"{self.name_space}/Time per iter (ms)"] = time_per_iter
self._log_backends(metrics, step=("epoch", self.epoch))
# TODO this should be in some on delete method / clean up
if self.mlflow_backend:
self.mlflow_client.set_terminated(
self.mlflow_run.info.run_id, status="FINISHED"
)
# Alert
if (
self.epoch_alert_freq
and self.root
and self.epoch % self.epoch_alert_freq == 0
):
if self.wandb_backend:
# TODO: Make this a little more informative?
alert(
title=f"{sys.argv[0]} training progress report",
text=f"Run {wandb.run.name} is at epoch {self.epoch}.",
)
def _log_backends(
self,
metric_dict: Dict[str, float],
step: Tuple[str, int] = None,
):
"""Logs a dictionary of metrics to different supported backends
Parameters
----------
metric_dict : Dict[str, float]
Metric dictionary
step : Tuple[str, int], optional
Tuple containing (step name, step index), by default None
print : bool, optional
Print metrics, by default False
"""
# MLFlow Logging
if self.mlflow_backend:
for key, value in metric_dict.items():
# If value is None just skip
if value is None:
continue
# Keys only allow alpha numeric, ., -, /, _ and spaces
key = re.sub("[^a-zA-Z0-9\.\-\s\/\_]+", "", key)
self.mlflow_client.log_metric(
self.mlflow_run.info.run_id, key, value, step=step[1]
)
# WandB Logging
if self.wandb_backend:
# For WandB send step in as a metric
# Step argument in lod function does not work with multiple log calls at
# different intervals
metric_dict[step[0]] = step[1]
wandb.log(metric_dict)
[docs] def log_figure(
self,
figure,
artifact_file: str = "artifact",
plot_dir: str = "./",
log_to_file: bool = False,
):
"""Logs figures on root process to wand or mlflow. Will store it to file in case neither are selected.
Parameters
----------
figure : Figure
matplotlib or plotly figure to plot
artifact_file : str, optional
File name. CAUTION overrides old files of same name
plot_dir : str, optional
output directory for plot
log_to_file : bool, optional
set to true in case figure shall be stored to file in addition to logging it to mlflow/wandb
"""
dist = DistributedManager()
if dist.rank != 0:
return
if self.wandb_backend:
wandb.log({artifact_file: figure})
if self.mlflow_backend:
self.mlflow_client.log_figure(
figure=figure,
artifact_file=artifact_file,
run_id=self.mlflow_run.info.run_id,
)
if (not self.wandb_backend) and (not self.mlflow_backend):
log_to_file = True
if log_to_file:
plot_dir = abspath(join(getcwd(), plot_dir))
if not exists(plot_dir):
makedirs(plot_dir)
if not artifact_file.endswith(".png"):
artifact_file += ".png"
figure.savefig(join(plot_dir, artifact_file))
[docs] @classmethod
def toggle_wandb(cls, value: bool):
"""Toggle WandB logging
Parameters
----------
value : bool
Use WandB logging
"""
cls.wandb_backend = value
[docs] @classmethod
def toggle_mlflow(cls, value: bool):
"""Toggle MLFlow logging
Parameters
----------
value : bool
Use MLFlow logging
"""
cls.mlflow_backend = value
[docs] @staticmethod
def initialize(use_wandb: bool = False, use_mlflow: bool = False):
"""Initialize logging singleton
Parameters
----------
use_wandb : bool, optional
Use WandB logging, by default False
use_mlflow : bool, optional
Use MLFlow logging, by default False
"""
if wandb.run is None and use_wandb:
PythonLogger().warning("WandB not initialized, turning off")
use_wandb = False
if use_wandb:
LaunchLogger.toggle_wandb(True)
wandb.define_metric("epoch")
wandb.define_metric("iter")
# let only root process log to mlflow
if DistributedManager.is_initialized():
if DistributedManager().rank != 0:
return
if LaunchLogger.mlflow_run is None and use_mlflow:
PythonLogger().warning("MLFlow not initialized, turning off")
use_mlflow = False
if use_mlflow:
LaunchLogger.toggle_mlflow(True)