NVIDIA Modulus Core (Latest Release)
Core (Latest Release)

deeplearning/modulus/modulus-core/_modules/modulus/models/dlwp/dlwp.html

Source code for modulus.models.dlwp.dlwp

# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from dataclasses import dataclass
from typing import Tuple, Union

import torch
import torch.nn as nn

import modulus  # noqa: F401 for docs
from modulus.models.layers import get_activation
from modulus.models.meta import ModelMetaData
from modulus.models.module import Module

Tensor = torch.Tensor


def _get_same_padding(x: int, k: int, s: int) -> int:
    """Function to compute "same" padding. Inspired from:
    https://github.com/huggingface/pytorch-image-models/blob/0.5.x/timm/models/layers/padding.py
    """
    return max(s * math.ceil(x / s) - s - x + k, 0)


def _pad_periodically_equatorial(
    main_face, left_face, right_face, top_face, bottom_face, nr_rot, size=2
):
    if nr_rot != 0:
        top_face = torch.rot90(top_face, k=nr_rot, dims=(-2, -1))
        bottom_face = torch.rot90(bottom_face, k=nr_rot, dims=(-1, -2))
    padded_data_temp = torch.cat(
        (left_face[..., :, -size:], main_face, right_face[..., :, :size]), dim=-1
    )
    top_pad = torch.cat(
        (top_face[..., :, :size], top_face, top_face[..., :, -size:]), dim=-1
    )  # hacky - extend on the left and right side
    bottom_pad = torch.cat(
        (bottom_face[..., :, :size], bottom_face, bottom_face[..., :, -size:]), dim=-1
    )  # hacky - extend on the left and right side
    padded_data = torch.cat(
        (bottom_pad[..., -size:, :], padded_data_temp, top_pad[..., :size, :]), dim=-2
    )
    return padded_data


def _pad_periodically_polar(
    main_face,
    left_face,
    right_face,
    top_face,
    bottom_face,
    rot_axis_left,
    rot_axis_right,
    size=2,
):
    left_face = torch.rot90(left_face, dims=rot_axis_left)
    right_face = torch.rot90(right_face, dims=rot_axis_right)
    padded_data_temp = torch.cat(
        (bottom_face[..., -size:, :], main_face, top_face[..., :size, :]), dim=-2
    )
    left_pad = torch.cat(
        (left_face[..., :size, :], left_face, left_face[..., -size:, :]), dim=-2
    )  # hacky - extend the left and right
    right_pad = torch.cat(
        (right_face[..., :size, :], right_face, right_face[..., -size:, :]), dim=-2
    )  # hacky - extend the left and right
    padded_data = torch.cat(
        (left_pad[..., :, -size:], padded_data_temp, right_pad[..., :, :size]), dim=-1
    )
    return padded_data


def _cubed_conv_wrapper(faces, equator_conv, polar_conv):
    # compute the required padding
    padding_size = _get_same_padding(
        x=faces[0].size(-1), k=equator_conv.kernel_size[0], s=equator_conv.stride[0]
    )
    padding_size = padding_size // 2
    output = []
    if padding_size != 0:
        for i in range(6):
            if i == 0:
                x = _pad_periodically_equatorial(
                    faces[0],
                    faces[3],
                    faces[1],
                    faces[5],
                    faces[4],
                    nr_rot=0,
                    size=padding_size,
                )
                output.append(equator_conv(x))
            elif i == 1:
                x = _pad_periodically_equatorial(
                    faces[1],
                    faces[0],
                    faces[2],
                    faces[5],
                    faces[4],
                    nr_rot=1,
                    size=padding_size,
                )
                output.append(equator_conv(x))
            elif i == 2:
                x = _pad_periodically_equatorial(
                    faces[2],
                    faces[1],
                    faces[3],
                    faces[5],
                    faces[4],
                    nr_rot=2,
                    size=padding_size,
                )
                output.append(equator_conv(x))
            elif i == 3:
                x = _pad_periodically_equatorial(
                    faces[3],
                    faces[2],
                    faces[0],
                    faces[5],
                    faces[4],
                    nr_rot=3,
                    size=padding_size,
                )
                output.append(equator_conv(x))
            elif i == 4:
                x = _pad_periodically_polar(
                    faces[4],
                    faces[3],
                    faces[1],
                    faces[0],
                    faces[5],
                    rot_axis_left=(-1, -2),
                    rot_axis_right=(-2, -1),
                    size=padding_size,
                )
                output.append(polar_conv(x))
            else:  # i=5
                x = _pad_periodically_polar(
                    faces[5],
                    faces[3],
                    faces[1],
                    faces[4],
                    faces[0],
                    rot_axis_left=(-2, -1),
                    rot_axis_right=(-1, -2),
                    size=padding_size,
                )
                x = torch.flip(x, [-1])
                x = polar_conv(x)
                output.append(torch.flip(x, [-1]))
    else:
        for i in range(6):
            if i in [0, 1, 2, 3]:
                output.append(equator_conv(faces[i]))
            elif i == 4:
                output.append(polar_conv(faces[i]))
            else:  # i=5
                x = torch.flip(faces[i], [-1])
                x = polar_conv(x)
                output.append(torch.flip(x, [-1]))

    return output


def _cubed_non_conv_wrapper(faces, layer):
    output = [layer(faces[i]) for i in range(6)]
    return output


[docs]@dataclass class MetaData(ModelMetaData): name: str = "DLWP" # Optimization jit: bool = False cuda_graphs: bool = True amp_cpu: bool = True amp_gpu: bool = True # Inference onnx: bool = False # Physics informed var_dim: int = 1 func_torch: bool = False auto_grad: bool = False
[docs]class DLWP(Module): """A Convolutional model for Deep Learning Weather Prediction that works on Cubed-sphere grids. This model expects the input to be of shape [N, C, 6, Res, Res] Parameters ---------- nr_input_channels : int Number of channels in the input nr_output_channels : int Number of channels in the output nr_initial_channels : int Number of channels in the initial convolution. This governs the overall channels in the model. activation_fn : str Activation function for the convolutions depth : int Depth for the U-Net clamp_activation : Tuple of ints, floats or None The min and max value used for torch.clamp() Example ------- >>> model = modulus.models.dlwp.DLWP( ... nr_input_channels=2, ... nr_output_channels=4, ... ) >>> input = torch.randn(4, 2, 6, 64, 64) # [N, C, F, Res, Res] >>> output = model(input) >>> output.size() torch.Size([4, 4, 6, 64, 64]) Note ---- Reference: Weyn, Jonathan A., et al. "Sub‐seasonal forecasting with a large ensemble of deep‐learning weather prediction models." Journal of Advances in Modeling Earth Systems 13.7 (2021): e2021MS002502. """ def __init__( self, nr_input_channels: int, nr_output_channels: int, nr_initial_channels: int = 64, activation_fn: str = "leaky_relu", depth: int = 2, clamp_activation: Tuple[Union[float, int, None], Union[float, int, None]] = ( None, 10.0, ), ): super().__init__(meta=MetaData()) self.nr_input_channels = nr_input_channels self.nr_output_channels = nr_output_channels self.nr_initial_channels = nr_initial_channels self.activation_fn = get_activation(activation_fn) self.depth = depth self.clamp_activation = clamp_activation # define layers # define non-convolutional layers self.avg_pool = nn.AvgPool2d(2) self.upsample_layer = nn.Upsample(scale_factor=2) # define layers self.equatorial_downsample = [] self.equatorial_upsample = [] self.equatorial_mid_layers = [] self.polar_downsample = [] self.polar_upsample = [] self.polar_mid_layers = [] for i in range(depth): if i == 0: ins = self.nr_input_channels else: ins = self.nr_initial_channels * (2 ** (i - 1)) outs = self.nr_initial_channels * (2 ** (i)) self.equatorial_downsample.append(nn.Conv2d(ins, outs, kernel_size=3)) self.polar_downsample.append(nn.Conv2d(ins, outs, kernel_size=3)) self.equatorial_downsample.append(nn.Conv2d(outs, outs, kernel_size=3)) self.polar_downsample.append(nn.Conv2d(outs, outs, kernel_size=3)) for i in range(2): if i == 0: ins = outs outs = ins * 2 else: ins = outs outs = ins // 2 self.equatorial_mid_layers.append(nn.Conv2d(ins, outs, kernel_size=3)) self.polar_mid_layers.append(nn.Conv2d(ins, outs, kernel_size=3)) for i in range(depth - 1, -1, -1): if i == 0: outs = self.nr_initial_channels outs_final = outs else: outs = self.nr_initial_channels * (2 ** (i)) outs_final = outs // 2 ins = outs * 2 self.equatorial_upsample.append(nn.Conv2d(ins, outs, kernel_size=3)) self.polar_upsample.append(nn.Conv2d(ins, outs, kernel_size=3)) self.equatorial_upsample.append(nn.Conv2d(outs, outs_final, kernel_size=3)) self.polar_upsample.append(nn.Conv2d(outs, outs_final, kernel_size=3)) self.equatorial_downsample = nn.ModuleList(self.equatorial_downsample) self.polar_downsample = nn.ModuleList(self.polar_downsample) self.equatorial_mid_layers = nn.ModuleList(self.equatorial_mid_layers) self.polar_mid_layers = nn.ModuleList(self.polar_mid_layers) self.equatorial_upsample = nn.ModuleList(self.equatorial_upsample) self.polar_upsample = nn.ModuleList(self.polar_upsample) self.equatorial_last = nn.Conv2d(outs, self.nr_output_channels, kernel_size=1) self.polar_last = nn.Conv2d(outs, self.nr_output_channels, kernel_size=1) # define activation layers def activation(self, x: Tensor): x = self.activation_fn(x) if any(isinstance(c, (float, int)) for c in self.clamp_activation): x = torch.clamp( x, min=self.clamp_activation[0], max=self.clamp_activation[1] ) return x
[docs] def forward(self, cubed_sphere_input): # do some input checks if cubed_sphere_input.size(-3) != 6: raise ValueError("The input must have 6 faces.") if cubed_sphere_input.size(-2) != cubed_sphere_input.size(-1): raise ValueError("The input must have equal height and width") # split the cubed_sphere_input into individual faces faces = torch.split( cubed_sphere_input, split_size_or_sections=1, dim=2 ) # split along face dim faces = [torch.squeeze(face, dim=2) for face in faces] encoder_states = [] for i, (equatorial_layer, polar_layer) in enumerate( zip(self.equatorial_downsample, self.polar_downsample) ): faces = _cubed_conv_wrapper(faces, equatorial_layer, polar_layer) faces = _cubed_non_conv_wrapper(faces, self.activation) if i % 2 != 0: encoder_states.append(faces) faces = _cubed_non_conv_wrapper(faces, self.avg_pool) for i, (equatorial_layer, polar_layer) in enumerate( zip(self.equatorial_mid_layers, self.polar_mid_layers) ): faces = _cubed_conv_wrapper(faces, equatorial_layer, polar_layer) faces = _cubed_non_conv_wrapper(faces, self.activation) j = 0 for i, (equatorial_layer, polar_layer) in enumerate( zip(self.equatorial_upsample, self.polar_upsample) ): if i % 2 == 0: encoder_faces = encoder_states[len(encoder_states) - j - 1] faces = _cubed_non_conv_wrapper(faces, self.upsample_layer) faces = [ torch.cat((face_1, face_2), dim=1) for face_1, face_2 in zip(faces, encoder_faces) ] j += 1 faces = _cubed_conv_wrapper(faces, equatorial_layer, polar_layer) faces = _cubed_non_conv_wrapper(faces, self.activation) faces = _cubed_conv_wrapper(faces, self.equatorial_last, self.polar_last) output = torch.stack(faces, dim=2) return output
© Copyright 2023, NVIDIA Modulus Team. Last updated on Jul 25, 2024.