Topics
Topics
AR / VR
Cybersecurity
Edge Computing
Recommenders / Personalization
Computer Vision / Video Analytics
Data Center / Cloud
Generative AI / LLMs
Robotics
Content Creation / Rendering
Data Science
Networking
Simulation / Modeling / Design
Conversational AI
NVIDIA Developer
Blog
Forums
Sign In
Menu
DOCS HUB
Topics
Topics
AR / VR
Cybersecurity
Edge Computing
Recommenders / Personalization
Computer Vision / Video Analytics
Data Center / Cloud
Generative AI / LLMs
Robotics
Content Creation / Rendering
Data Science
Networking
Simulation / Modeling / Design
Conversational AI
NVIDIA Developer
Blog
Forums
Sign In
What can I help you with?
Submit Search
Deploy a Fraud Detection XGBoost Model with NVIDIA Triton
Submit Search
Submit Search
NVIDIA Docs Hub
NVIDIA LaunchPad
Deploy a Fraud Detection XGBoost Model with NVIDIA Triton
AI Practitioner
Overview
Fraud Detection with RAPIDS and Forest Inference Library
Tools, Libraries, and Frameworks Used
NVIDIA RAPIDS Overview
RAPIDS for Data Visualization
RAPIDS for ML
Step #1: Data Exploration and Training
Lab Basics
Explore Data and Train the Model
Triton Inference Server Overview
Deploy the Trained Model on the Triton Inference Server
Triton Inference Server
Triton Inference FIL Backend
XGBoost Model Storage
Step #2: Starting the Triton Inference Server
Step #3: Client Application
Next Steps
Notices
Legal
Agreements
Privacy Policy
Notice
Trademarks
Copyright
Edge Computing
Data Center / Cloud
Data Center / Cloud
© Copyright 2022-2023, NVIDIA.
Last updated on Feb 2, 2023.
Close
content here