core.models.T5.t5_model#
Module Contents#
Classes#
Functions#
Creates the extended attention mask |
|
Calculate position ids from token ids |
API#
- class core.models.T5.t5_model.T5LMHead(
- config: megatron.core.transformer.transformer_config.TransformerConfig,
- parallel_output: bool,
- vocab_size: int,
- pre_process: bool = True,
- share_embeddings_and_output_weights: bool = False,
- tp_group: Optional[torch.distributed.ProcessGroup] = None,
Bases:
megatron.core.transformer.module.MegatronModuleMasked LM head for T5
- Parameters:
config (TransformerConfig) – transformer config
parallel_output (bool) – wether output logits being distributed or not.
vocab_size (int) – vocabulary size
pre_process (bool) – Include embedding layer
share_embeddings_and_output_weights (bool) – When True, input embeddings and output logit weights are shared.
Initialization
- forward(
- hidden_states: torch.Tensor,
- word_embeddings_weight: torch.Tensor,
Forward pass.
- Parameters:
hidden_states (Tensor) – output hidden states from decoder
word_embeddings_weight (Tensor) – word embedding weight
- Returns:
logits tensor
- Return type:
Tensor
- class core.models.T5.t5_model.T5Model(
- config: megatron.core.transformer.transformer_config.TransformerConfig,
- encoder_config: megatron.core.transformer.transformer_config.TransformerConfig,
- transformer_encoder_layer_spec: megatron.core.transformer.spec_utils.ModuleSpec,
- transformer_decoder_layer_spec: megatron.core.transformer.spec_utils.ModuleSpec,
- vocab_size: int,
- max_sequence_length: int,
- pre_process: bool = True,
- post_process: bool = True,
- fp16_lm_cross_entropy: bool = False,
- parallel_output: bool = True,
- share_embeddings_and_output_weights: bool = False,
- position_embedding_type: Literal[learned_absolute, rope, relative] = 'learned_absolute',
- rotary_percent: float = 1.0,
- seq_len_interpolation_factor: Optional[float] = None,
- relative_attention_num_buckets: int = 32,
- relative_attention_max_distance: int = 128,
- add_encoder: bool = True,
- add_decoder: bool = True,
- pg_collection: megatron.core.process_groups_config.ProcessGroupCollection = None,
Bases:
megatron.core.models.common.language_module.language_module.LanguageModuleT5 Language model.
- Parameters:
config (TransformerConfig) – transformer config
encoder_config (TransformerConfig) – encoder transformer config
transformer_encoder_layer_spec (ModuleSpec) – transformer layer customization specs for encoder
transformer_decoder_layer_spec (ModuleSpec) – transformer layer customization specs for decoder
vocab_size (int) – vocabulary size
max_sequence_length (int) – maximum size of sequence. This is used for positional embedding
pre_process (bool) – Include embedding layer (used with pipeline parallelism)
post_process (bool) – Include an output layer (used with pipeline parallelism)
fp16_lm_cross_entropy (bool, optional) – Defaults to False
parallel_output (bool) – Do not gather the outputs, keep them split across tensor parallel ranks
share_embeddings_and_output_weights (bool) – When True, input embeddings and output logit weights are shared. Defaults to False.
position_embedding_type (string) – Position embedding type. Options [‘learned_absolute’, ‘rope’]. Defaults is ‘learned_absolute’.
rotary_percent (float) – Percent of rotary dimension to use for rotary position embeddings. Defaults to 1.0 (100%). Ignored unless position_embedding_type is ‘rope’.
seq_len_interpolation_factor (float) – scale of linearly interpolating RoPE for longer sequences. The value must be a float larger than 1.0. Defaults to None.
add_encoder (bool) – Create the encoder (used with pipeline parallelism). When using pipelining, the encoder will only be created on a subset of the pipeline ranks.
add_decoder (bool) – Include an output layer (used with pipeline parallelism). As with
add_encoder, when using this model and pipelining, the decoder will only be created on a subset of the pipeline ranks.
Initialization
- forward(
- encoder_input_ids: torch.Tensor,
- decoder_input_ids: torch.Tensor,
- encoder_attn_mask: torch.Tensor,
- decoder_attn_mask: torch.Tensor,
- encoder_decoder_attn_mask: torch.Tensor,
- lm_labels: torch.Tensor = None,
- encoder_hidden_states: torch.Tensor = None,
- output_encoder_hidden_only: bool = False,
- inference_context: megatron.core.inference.contexts.BaseInferenceContext = None,
- packed_seq_params: megatron.core.packed_seq_params.PackedSeqParams = None,
- *,
- inference_params: Optional[megatron.core.inference.contexts.BaseInferenceContext] = None,
Forward pass.
- Parameters:
encoder_input_ids (Tensor) – input ids for encoder
decoder_input_ids (Tensor) – input ids for decoder
encoder_attn_mask (Tensor) – self-attention mask for encoder
decoder_attn_mask (Tensor) – self-attention mask for decoder
encoder_decoder_attn_mask (Tensor) – cross-attention mask between encoder and decoder
lm_labels (Tensor) – labels for decoder output
inference_context (BaseInferenceContext) – relevant arguments for inferencing
- Returns:
loss tensor
- Return type:
Tensor
- set_input_tensor(input_tensor)#
See megatron.model.transformer.set_input_tensor()
Function to share the input embeddings and output logit weights.
- sharded_state_dict(
- prefix: str = '',
- sharded_offsets: Tuple[Tuple[int, int, int]] = (),
- metadata: Optional[dict] = None,
Sharded state dict implementation handling duplication of encoder and decoder layers.
Some layers (output, embedding) are shared between the encoder and decoder. This method sets the replica_id for them to ensure there is only one layer instance with replica_id (0, 0, 0).
- Parameters:
prefix (str) – Module name prefix.
sharded_offsets (tuple) – PP related offsets, expected to be empty at this module level.
metadata (Optional[Dict]) – metadata controlling sharded state dict creation.
- Returns:
sharded state dict for the T5Model
- Return type:
ShardedStateDict
- core.models.T5.t5_model.t5_extended_attention_mask(
- attention_mask_list: List[torch.Tensor],
Creates the extended attention mask
Converts the attention mask of dimension [batch size, seq_len, seq_len] to [batch size, 1, seq_len, seq_len]
- Parameters:
attention_mask (Tensor) – The input attention mask
- Returns:
The extended binary attention mask
- Return type:
Tensor
- core.models.T5.t5_model.t5_position_ids(token_ids: torch.Tensor) torch.Tensor#
Calculate position ids from token ids
- Parameters:
token_ids (Tensor) – input tokens
- Returns:
position ids
- Return type:
Tensor