Installation#
NVIDIA® DeepStream Software Development Kit (SDK) is an accelerated AI framework to build intelligent video analytics (IVA) pipelines. DeepStream runs on NVIDIA® T4, NVIDIA® Hopper, NVIDIA® Blackwell, NVIDIA® Ampere, NVIDIA® ADA and platform such as NVIDIA® Jetson AGX Thor. For dGPU platforms Enterprise GPUs are highly recommended for deployments that are expected to run 24x7. Gaming GPUs are not designed to perform in such type of environments.
Jetson Setup#
This section explains how to prepare a Jetson device before installing the DeepStream SDK.
Note
Steps to install DeepStream SDK locally, assume that ~/.local/bin/
has been added to the ~/.bashrc
or ~/.profile
Install Jetson SDK components#
Download NVIDIA SDK Manager from https://developer.nvidia.com/embedded/jetpack. You will use this to install JetPack 7.0 GA (corresponding to L4T 38.2 release)
NVIDIA SDK Manager is a graphical application which flashes and installs the JetPack packages.
The flashing procedure takes approximately 10-30 minutes, depending on the host system.
Install Dependencies#
Install prerequisite packages#
Enter the following commands to install the prerequisite packages:
$ sudo apt install \
libssl3 \
libssl-dev \
libgstreamer1.0-0 \
gstreamer1.0-tools \
gstreamer1.0-plugins-good \
gstreamer1.0-plugins-bad \
gstreamer1.0-plugins-ugly \
gstreamer1.0-libav \
libgstreamer-plugins-base1.0-dev \
libgstrtspserver-1.0-0 \
libjansson4 \
libyaml-cpp-dev \
libmosquitto1
Note
Sometimes with RTSP streams the application gets stuck on reaching EOS. This is because of an issue in rtpjitterbuffer component.
To fix this issue, a script “update_rtpmanager.sh” at /opt/nvidia/deepstream/deepstream/
has been provided with
required details to update gstrtpmanager library. The script should be executed once above mentioned packages are
installed as prerequisite.
Install librdkafka (to enable Kafka protocol adaptor for message broker)#
Install confluent-platform:
sudo mkdir -p /etc/apt/keyrings wget -qO - https://packages.confluent.io/deb/8.0/archive.key | gpg \ --dearmor | sudo tee /etc/apt/keyrings/confluent.gpg > /dev/null CP_DIST=$(lsb_release -cs) echo "Types: deb URIs: https://packages.confluent.io/deb/8.0 Suites: stable Components: main Architectures: $(dpkg --print-architecture) Signed-by: /etc/apt/keyrings/confluent.gpg Types: deb URIs: https://packages.confluent.io/clients/deb/ Suites: ${CP_DIST} Components: main Architectures: $(dpkg --print-architecture) Signed-By: /etc/apt/keyrings/confluent.gpg" | sudo tee /etc/apt/sources.list.d/confluent-platform.sources > /dev/null sudo apt-get update && sudo apt-get install confluent-platform
Install librdkafka:
sudo apt-get install librdkafka-dev
Install latest NVIDIA BSP packages#
Installation of JetPack 7.0 GA will ensure that latest NVIDIA BSP packages are installed.
Install the DeepStream SDK#
Method 1: Using SDK Manager
Select
DeepStreamSDK
from theAdditional SDKs
section along with JP 7.0 GA software components for installation.Method 2: Using the DeepStream tar package: https://catalog.ngc.nvidia.com/orgs/nvidia/resources/deepstream
Download the DeepStream 8.0 Jetson tar package
deepstream_sdk_v8.0.0_jetson.tbz2
to the Jetson device.Enter the following commands to extract and install the DeepStream SDK:
$ sudo tar -xvf deepstream_sdk_v8.0.0_jetson.tbz2 -C / $ cd /opt/nvidia/deepstream/deepstream-8.0 $ sudo ./install.sh $ sudo ldconfig
Method 3: Using the DeepStream Debian package: https://catalog.ngc.nvidia.com/orgs/nvidia/resources/deepstream
Download the DeepStream 8.0 Jetson Debian package
deepstream-8.0_8.0.0-1_arm64.deb
to the Jetson device. Enter the following command:$ sudo apt-get install ./deepstream-8.0_8.0.0-1_arm64.deb
Method 4: Use Docker containers
DeepStream docker containers are available on NGC. See the Docker Containers section to learn about developing and deploying DeepStream using docker containers.
Note
Verification: Once DeepStream SDK installation is successful, refer to Expected output (deepstream-app) for the expected output.
dGPU Setup for Ubuntu#
This section explains how to prepare an Ubuntu x86_64
system with NVIDIA dGPU devices before installing the DeepStream SDK.
Note
Steps to install DeepStream SDK locally, assume that ~/.local/bin/
has been added to the ~/.bashrc
or ~/.profile
Note
This document uses the term dGPU (“discrete GPU”) to refer to NVIDIA GPU expansion card products such as NVIDIA Tesla® T4, NVIDIA® Hopper, NVIDIA® Blackwell, NVIDIA® Ampere, NVIDIA® ADA, NVIDIA GeForce® RTX 2080, NVIDIA GeForce® RTX 3080, NVIDIA GeForce® RTX 4080 and GeForce®/NVIDIA RTX/QUADRO. This version of DeepStream SDK runs on GPUs supported by NVIDIA driver 570.133.20 and NVIDIA TensorRT™ 10.9.0.34 and later versions.
Prerequisites#
You must install the following components:
Ubuntu 24.04
GStreamer 1.24.2
NVIDIA driver 570.133.20
CUDA 12.8
TensorRT 10.9.0.34
Remove all previous DeepStream installations#
Enter the following commands to remove all previous DeepStream 3.0 or prior installations:
$ sudo rm -rf /usr/local/deepstream /usr/lib/x86_64-linux-gnu/gstreamer-1.0/libgstnv* /usr/bin/deepstream* /usr/lib/x86_64-linux-gnu/gstreamer-1.0/libnvdsgst*
/usr/lib/x86_64-linux-gnu/gstreamer-1.0/deepstream*
/opt/nvidia/deepstream/deepstream*
$ sudo rm -rf /usr/lib/x86_64-linux-gnu/libv41/plugins/libcuvidv4l2_plugin.so
To remove DeepStream 4.0 or later installations:
Open the
uninstall.sh
file in/opt/nvidia/deepstream/deepstream/
Run the following script as
sudo ./uninstall.sh
Install Dependencies#
Install prerequisite packages#
Enter the following commands to install the necessary packages before installing the DeepStream SDK:
$ sudo apt install \
libssl3 \
libssl-dev \
libgles2-mesa-dev \
libgstreamer1.0-0 \
gstreamer1.0-tools \
gstreamer1.0-plugins-good \
gstreamer1.0-plugins-bad \
gstreamer1.0-plugins-ugly \
gstreamer1.0-libav \
libgstreamer-plugins-base1.0-dev \
libgstrtspserver-1.0-0 \
libjansson4 \
libyaml-cpp-dev \
libjsoncpp-dev \
protobuf-compiler \
libmosquitto1 \
gcc \
make \
git \
python3
Note
Sometimes with RTSP streams the application gets stuck on reaching EOS. This is because of an issue in rtpjitterbuffer component.
To fix this issue,a script “update_rtpmanager.sh” at /opt/nvidia/deepstream/deepstream/
has been provided with
required details to update gstrtpmanager library. The script should be executed once above mentioned packages are
installed as prerequisite.
Install CUDA Toolkit 12.8#
Run the following commands (reference, https://developer.nvidia.com/cuda-downloads):
$ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/3bf863cc.pub
$ sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/ /"
$ sudo apt-get update
$ sudo apt-get install cuda-toolkit-12-8
Note
If you observe following errors while CUDA installation, refer to https://developer.nvidia.com/blog/updating-the-cuda-linux-gpg-repository-key/.
W: GPG error: https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64 InRelease: The following signatures couldn't be verified because the public key is not available: NO_PUBKEY A4B469963BF863CC
E: The repository 'https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64 InRelease' is no longer signed.
Install NVIDIA driver 570.133.20#
Download and install using NVIDIA driver 570.133.20 from NVIDIA Unix drivers page at: https://www.nvidia.com/en-us/drivers/details/242548/
Run the following commands:
$ chmod 755 NVIDIA-Linux-x86_64-570.133.20.run $ sudo ./NVIDIA-Linux-x86_64-570.133.20.run --no-cc-version-check
Note
Ensure gdm, lightdm or Xorg service is stopped while installing nvidia driver
Use command : sudo service gdm stop
sudo service lightdm stop
sudo pkill -9 Xorg
Install TensorRT 10.9.0.34#
Run the following command to install TensorRT 10.9.0.34:
version="10.9.0.34-1+cuda12.8" sudo apt-get install libnvinfer-dev=${version} libnvinfer-dispatch-dev=${version} \ libnvinfer-dispatch10=${version} libnvinfer-headers-dev=${version} libnvinfer-headers-plugin-dev=${version} \ libnvinfer-lean-dev=${version} libnvinfer-lean10=${version} libnvinfer-plugin-dev=${version} \ libnvinfer-plugin10=${version} libnvinfer-vc-plugin-dev=${version} libnvinfer-vc-plugin10=${version} \ libnvinfer10=${version} libnvonnxparsers-dev=${version} libnvonnxparsers10=${version} tensorrt-dev=${version}Note
It is assumed, “deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/” has been added, as mentioned in CUDA Toolkit 12.8 installation step.
libnvparsers are deprecated since TRT 9.0.
Install librdkafka (to enable Kafka protocol adaptor for message broker)#
Clone the librdkafka repository from GitHub:
$ git clone https://github.com/confluentinc/librdkafka.git
Configure and build the library:
$ cd librdkafka $ git checkout tags/v2.2.0 $ ./configure --enable-ssl $ make $ sudo make install
Copy the generated libraries to the deepstream directory:
$ sudo mkdir -p /opt/nvidia/deepstream/deepstream/lib $ sudo cp /usr/local/lib/librdkafka* /opt/nvidia/deepstream/deepstream/lib $ sudo ldconfig
Install the DeepStream SDK#
Method 1: Using the DeepStream Debian package
Download the DeepStream 8.0 dGPU Debian package
deepstream-8.0_8.0.0-1_amd64.deb
: https://catalog.ngc.nvidia.com/orgs/nvidia/resources/deepstreamEnter the command:
$ sudo apt-get install ./deepstream-8.0_8.0.0-1_amd64.deb
Method 2: Download the DeepStream tar package: https://catalog.ngc.nvidia.com/orgs/nvidia/resources/deepstream
Navigate to the location of the downloaded DeepStream package to extract and install the DeepStream SDK:
$ sudo tar -xvf deepstream_sdk_v8.0.0_x86_64.tbz2 -C / $ cd /opt/nvidia/deepstream/deepstream-8.0/ $ sudo ./install.sh $ sudo ldconfig
Method 3: Use Docker containers
DeepStream docker containers are available on NGC. See the Docker Containers section to learn about developing and deploying DeepStream using docker containers.
Note
Verification: Once DeepStream SDK installation is successful, refer to Expected output (deepstream-app) for the expected output.
IGX/dGPU on ARM Setup for Ubuntu#
Note
DeepStream for IGX is not supported in this release.
This section explains how to prepare a NVIDIA IGX system with NVIDIA dGPU devices before installing the DeepStream SDK.
Note
This document uses the term dGPU (“discrete GPU”) to refer to NVIDIA GPU expansion card products such as NVIDIA RTX A6000 and NVIDIA RTX 6000 Ada. This version of DeepStream SDK has been validated with NVIDIA driver 570.133.20 and NVIDIA TensorRT™ 10.9.0.34.
You must install the following components:
Please refer IGX-Software Install Guide for installing Base-OS: IGX-Software Guide
Docker
Nvidia Container Toolkit
Run ARM SBSA docker on IGX/dGPU#
Pull the DeepStream Triton Inference Server docker
docker pull nvcr.io/nvidia/deepstream:8.0-triton-arm-sbsa
Start the docker
sudo docker run -it --rm --runtime=nvidia --network=host -e NVIDIA_DRIVER_CAPABILITIES=compute,utility,video,graphics --gpus all --privileged -e DISPLAY=:0 -v /tmp/.X11-unix:/tmp/.X11-unix -v /etc/X11:/etc/X11 nvcr.io/nvidia/deepstream:8.0-triton-arm-sbsa
dGPU on ARM Setup for Ubuntu#
This section explains how to prepare an Ubuntu aarch64
system with NVIDIA dGPU devices before installing the DeepStream SDK.
You must install the following components:
NVIDIA driver 570.133.20
Docker
Nvidia Container Toolkit
Install NVIDIA driver 570.133.20#
Download and install using NVIDIA driver 570.133.20 from NVIDIA Unix drivers page at: https://www.nvidia.com/en-us/drivers/details/242547/
Run the following commands:
$ chmod 755 NVIDIA-Linux-aarch64-570.133.20.run $ sudo ./NVIDIA-Linux-aarch64-570.133.20.run --no-cc-version-check
Note
Ensure gdm, lightdm or Xorg service is stopped while installing Nvidia driver
Use command : sudo service gdm stop
sudo service lightdm stop
sudo pkill -9 Xorg
Run dGPU on ARM Docker (SBSA)#
Pull the DeepStream Triton Inference Server docker
docker pull nvcr.io/nvidia/deepstream:8.0-triton-arm-sbsa
Start the docker
sudo docker run -it --rm --runtime=nvidia --network=host -e NVIDIA_DRIVER_CAPABILITIES=compute,utility,video,graphics --gpus all --privileged -e DISPLAY=:0 -v /tmp/.X11-unix:/tmp/.X11-unix -v /etc/X11:/etc/X11 nvcr.io/nvidia/deepstream:8.0-triton-arm-sbsa
dGPU Setup for RedHat Enterprise Linux (RHEL)#
DeepStream for RHEL is not supported in this release.
Platform and OS Compatibility#
The following table provides information about platform and operating system compatibility in the current and earlier versions of DeepStream.
Jetson model Platform and OS Compatibility# DS release
DS 6.1.1
DS 6.2
DS 6.3
DS 6.4
DS 7.0
DS 7.1
DS 8.0
Jetson platforms
AGX Xavier, Jetson NX, Jetson Orin
Xavier AGX , Xavier NX, AGX Orin, Orin NX
Xavier AGX , Xavier NX, AGX Orin, Orin NX, Orin nano
AGX Orin, Orin NX, Orin nano
AGX Orin, Orin NX, Orin nano
AGX Orin, Orin NX, Orin nano
AGX Thor
OS
L4T Ubuntu 20.04
L4T Ubuntu 20.04
L4T Ubuntu 20.04
L4T Ubuntu 22.04
L4T Ubuntu 22.04
L4T Ubuntu 22.04
L4T Ubuntu 24.04
JetPack release
5.0.2 GA Revision 1
5.1 GA
5.1.2 GA
6.0 DP
6.0 GA
6.1 GA
7.0 GA
L4T release
35.1
35.2.1
35.4
36.2
36.3
36.4
38.2
CUDA release
CUDA 11.4
CUDA 11.4
CUDA 11.4
CUDA 12.2
CUDA 12.2
CUDA 12.6
CUDA 13.0
cuDNN release
cuDNN 8.4.1.50+
cuDNN 8.6.0.166+
cuDNN 8.6.0.166+
cuDNN 8.9.4.25+
cuDNN 8.9.4.25+
cuDNN 9.3.0
CuDNN 9.12.0
TensorRT release
TRT 8.4.1.5
TRT 8.5.2.2
TRT 8.5.2.2
TRT 8.6.2.3
TRT 8.6.2.3
TRT 10.3.0.31
TRT 10.13.2.6
OpenCV release
OpenCV 4.2.0
OpenCV 4.2.0
OpenCV 4.5.4
OpenCV 4.8.0
OpenCV 4.8.0
OpenCV 4.8.0
OpenCV 4.8.0
VisionWorks
NA
NA
NA
NA
NA
NA
NA
GStreamer
GStreamer 1.16.2
GStreamer 1.16.3
GStreamer 1.16.3
GStreamer 1.20.3
GStreamer 1.20.3
GStreamer 1.20.3
GStreamer 1.24.2
Docker image
deepstream-l4t:6.1.1
deepstream-l4t:6.2
deepstream-l4t:6.3
deepstream:6.4
deepstream:7.0
deepstream:7.1
deepstream:8.0
dGPU model Platform and OS Compatibility# DS release
DS 6.1.1
DS 6.2
DS 6.3
DS 6.4
DS 7.0
DS 7.1
DS 8.0
GPU platforms
T4, V100, A2, A10, A30, A100, RTX Ampere (Ax000/RTX30x0)
T4, V100, A2, A10, A30, A100, RTX Ampere (Ax000/RTX30x0), Hopper, ADA
T4, V100, A2, A10, A30, A100, RTX Ampere (Ax000/RTX30x0), Hopper, ADA
T4, V100, A2, A10, A30, A100, RTX Ampere (Ax000/RTX30x0), Hopper, ADA
T4, V100, A2, A10, A30, A100, RTX Ampere (Ax000/RTX30x0), Hopper, ADA
T4, A2, A10, A30, A100, RTX Ampere (Ax000/RTX30x0), Hopper, ADA
Turing, Ampere, Hopper, ADA, Blackwell
OS
Ubuntu 20.04
Ubuntu 20.04
Ubuntu 20.04
Ubuntu 22.04
Ubuntu 22.04
Ubuntu 22.04
Ubuntu 24.04
GCC
GCC 9.4.0
GCC 9.4.0
GCC 9.4.0
GCC 11.4.0
GCC 11.4.0
GCC 11.4.0
GCC 11.4.0
CUDA release
CUDA 11.7.1
CUDA 11.8
CUDA 12.1
CUDA 12.2
CUDA 12.2
CUDA 12.6
CUDA 12.8
cuDNN release
cuDNN 8.4.1.50+
cuDNN 8.7.0.84-1+
cuDNN 8.8.1.3-1+
cuDNN 8.9.4.25-1+
cuDNN 8.9.6.50-1+
cuDNN 9.3.0
CuDNN 9.7.1
TRT release
TRT 8.4.1.5
TRT 8.5.2.2
TRT 8.5.3.1
TRT 8.6.1.6
TRT 8.6.1.6
TRT 10.3.0.26
TRT 10.9.0.34
Display Driver
R515.65.01
R525.85.12
R525.125.06
R535.104.12
R535.161.08
R535.183.06(Data Center GPUs), R560.35.03(RTX GPUs)
R570.133.20
VideoSDK release
SDK 9.1
SDK 9.1
SDK 9.1
SDK 9.1
SDK 9.1
SDK 9.1
SDK 9.1
OFSDK release
2.0.23
2.0.23
2.0.23
2.0.23
2.0.23
2.0.23
2.0.23
GStreamer release
GStreamer 1.16.2
GStreamer 1.16.3
GStreamer 1.16.3
GStreamer 1.20.3
GStreamer 1.20.3
GStreamer 1.20.3
GStreamer 1.24.2
OpenCV release
OpenCV 4.2.0
OpenCV 4.2.0
OpenCV 4.2.0
OpenCV 4.5.4
OpenCV 4.5.4
OpenCV 4.5.4
OpenCV 4.6
Docker image
deepstream:6.1.1
deepstream:6.2
deepstream:6.3
deepstream:6.4
deepstream:7.0
deepstream:7.1
deepstream:8.0
NVAIE release
NA
NVAIE-3.x
NVAIE-3.x
NVAIE-4.x
NA
NA
NA
Note
By default, OpenCV has been deprecated. However, OpenCV can be enabled in plugins such as nvinfer (nvdsinfer) and dsexample (gst-dsexample) by setting WITH_OPENCV=1 in the Makefile of these components. Please refer component README for more instructions.
NA: “Not Applicable”
DeepStream 8.0 support is currently enabled by SBSA triton docker. SBSA category currently supports GH200 and GB200.