Distributed Data Classification#
NVIDIA NeMo Curator provides a module for performing distributed classification on large text datasets using GPU acceleration. This enables the categorization and filtering of text documents based on multiple dimensions such as domain, quality, safety, educational value, content type, and more. These classifications can enhance the quality of training data for large language models by identifying high-value content and removing problematic material.
How It Works#
The distributed data classification in NeMo Curator works by:
Parallel Processing: Chunking datasets across multiple computing nodes and GPUs to accelerate classification
Pre-trained Models: Using specialized models for different classification tasks
Batched Inference: Optimizing throughput with intelligent batching via CrossFit integration
Consistent API: Providing a unified interface through the
DistributedDataClassifier
base class
The DistributedDataClassifier
is designed to run on GPU clusters with minimal code changes regardless of which specific classifier you’re using. All classifiers support filtering based on classification results and storing prediction scores as metadata.
Note
Distributed classification requires GPU acceleration and is not supported for CPU-only processing. As long as GPU resources are available and NeMo Curator is correctly installed, GPU acceleration is handled automatically.
Usage#
NVIDIA NeMo Curator provides a base class DistributedDataClassifier
that can be extended to fit your specific model. The only requirement is that the model can fit on a single GPU. This module operates on the GPU and works within the pipeline framework using DocumentBatch processing.
Classifier Comparison#
Classifier |
Purpose |
Model Location |
Key Parameters |
Requirements |
---|---|---|---|---|
DomainClassifier |
Categorize English text by domain |
|
None |
|
MultilingualDomainClassifier |
Categorize text in 52 languages by domain |
|
None |
|
QualityClassifier |
Assess document quality |
|
None |
|
AegisClassifier |
Detect unsafe content |
|
HuggingFace token |
|
InstructionDataGuardClassifier |
Detect poisoning attacks |
|
HuggingFace token |
|
FineWebEduClassifier |
Score educational value |
|
None |
|
FineWebMixtralEduClassifier |
Score educational value (Mixtral annotations) |
|
None |
|
FineWebNemotronEduClassifier |
Score educational value (Nemotron annotations) |
|
None |
|
ContentTypeClassifier |
Categorize by speech type |
|
None |
|
PromptTaskComplexityClassifier |
Classify prompt tasks and complexity |
|
None |
Domain Classifier#
The Domain Classifier categorizes English text documents into specific domains or subject areas.
from nemo_curator.pipeline import Pipeline
from nemo_curator.stages.text.io.reader import JsonlReader
from nemo_curator.stages.text.io.writer import JsonlWriter
from nemo_curator.stages.text.classifiers import DomainClassifier
# Create pipeline
pipeline = Pipeline(name="domain_classification")
# Load dataset
reader = JsonlReader(
file_paths="books_dataset/",
fields=["text", "id"]
)
pipeline.add_stage(reader)
# Apply the classifier, filtering for specific domains
domain_classifier = DomainClassifier(filter_by=["Games", "Sports"])
pipeline.add_stage(domain_classifier)
# Save the results
writer = JsonlWriter(path="games_and_sports/")
pipeline.add_stage(writer)
# Execute pipeline
results = pipeline.run() # Uses XennaExecutor by default
Multilingual Domain Classifier#
Functionally similar to the Domain Classifier, but supports 52 languages.
from nemo_curator.pipeline import Pipeline
from nemo_curator.stages.text.io.reader import JsonlReader
from nemo_curator.stages.text.io.writer import JsonlWriter
from nemo_curator.stages.text.classifiers import MultilingualDomainClassifier
pipeline = Pipeline(name="multilingual_domain_classification")
pipeline.add_stage(JsonlReader(file_paths="multilingual_dataset/", fields=["text", "id"]))
pipeline.add_stage(MultilingualDomainClassifier(filter_by=["Games", "Sports"]))
pipeline.add_stage(JsonlWriter(path="classified_output/"))
results = pipeline.run() # Uses XennaExecutor by default
Quality Classifier#
The Quality Classifier assesses document quality using the NVIDIA Quality Classifier DeBERTa model.
from nemo_curator.pipeline import Pipeline
from nemo_curator.stages.text.io.reader import JsonlReader
from nemo_curator.stages.text.io.writer import JsonlWriter
from nemo_curator.stages.text.classifiers import QualityClassifier
pipeline = Pipeline(name="quality_classification")
pipeline.add_stage(JsonlReader(file_paths="web_documents/", fields=["text", "id"]))
pipeline.add_stage(QualityClassifier())
pipeline.add_stage(JsonlWriter(path="quality_classified/"))
results = pipeline.run() # Uses XennaExecutor by default
Note
The exact label categories returned by the Quality Classifier depend on the model configuration. Check the prediction column in your results to see the available labels for filtering with the filter_by
parameter.
AEGIS Safety Model#
The AEGIS classifier detects unsafe content across 13 critical risk categories. It requires a HuggingFace token for access to Llama Guard.
from nemo_curator.pipeline import Pipeline
from nemo_curator.stages.text.io.reader import JsonlReader
from nemo_curator.stages.text.io.writer import JsonlWriter
from nemo_curator.stages.text.classifiers import AegisClassifier
# Create pipeline
pipeline = Pipeline(name="aegis_classification")
# Load dataset
reader = JsonlReader(
file_paths="content/",
fields=["text", "id"]
)
pipeline.add_stage(reader)
# Apply the AEGIS classifier
token = "hf_1234" # Your HuggingFace user access token
safety_classifier = AegisClassifier(
aegis_variant="nvidia/Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0",
hf_token=token,
filter_by=["safe", "O13"] # Keep only safe content and "needs caution" category
)
pipeline.add_stage(safety_classifier)
# Save the results
writer = JsonlWriter(path="safe_content/")
pipeline.add_stage(writer)
# Execute pipeline
results = pipeline.run() # Uses XennaExecutor by default
The classifier adds a column with labels: “safe,” “O1” through “O13” (each representing specific safety risks), or “unknown.” For raw LLM output, use:
safety_classifier = AegisClassifier(
aegis_variant="nvidia/Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0",
hf_token=token,
keep_raw_pred=True,
raw_pred_column="raw_predictions"
)
Instruction Data Guard#
Detects LLM poisoning attacks in instruction-response datasets. Requires HuggingFace token access.
from nemo_curator.pipeline import Pipeline
from nemo_curator.stages.text.io.reader import JsonlReader
from nemo_curator.stages.text.io.writer import JsonlWriter
from nemo_curator.stages.text.classifiers import InstructionDataGuardClassifier
# Create pipeline
pipeline = Pipeline(name="instruction_data_guard")
# Load dataset
# For instruction-response data: "Instruction: {instruction}. Input: {input_}. Response: {response}."
reader = JsonlReader(
file_paths="instruction_data/",
fields=["text", "id"]
)
pipeline.add_stage(reader)
# Apply the classifier
token = "hf_1234" # Your HuggingFace user access token
classifier = InstructionDataGuardClassifier(hf_token=token)
pipeline.add_stage(classifier)
# Save the results
writer = JsonlWriter(path="guard_classified/")
pipeline.add_stage(writer)
# Execute pipeline
results = pipeline.run() # Uses XennaExecutor by default
The output includes two columns: a float score instruction_data_guard_poisoning_score
and a Boolean is_poisoned
.
FineWeb Educational Content Classifier#
Scores documents on educational value from 0–5. This helps prioritize content for knowledge-intensive tasks.
Score Ranges and Meanings#
Score |
Label |
Description |
Example Content |
---|---|---|---|
0-1 |
Very Low |
No educational value |
Spam, advertisements, broken content |
2 |
Low |
Minimal educational content |
Simple lists, basic product descriptions |
3 |
Moderate |
Some educational value |
News articles, basic how-to guides |
4 |
High |
Good educational content |
Detailed tutorials, academic discussions |
5 |
Very High |
Excellent educational material |
Comprehensive guides, scholarly articles |
from nemo_curator.pipeline import Pipeline
from nemo_curator.stages.text.io.reader import JsonlReader
from nemo_curator.stages.text.io.writer import JsonlWriter
from nemo_curator.stages.text.classifiers import FineWebEduClassifier
# Create pipeline
pipeline = Pipeline(name="fineweb_edu_classification")
# Load dataset
reader = JsonlReader(
file_paths="web_documents/*.jsonl",
fields=["text", "id"]
)
pipeline.add_stage(reader)
# Apply the FineWeb Edu classifier
edu_classifier = FineWebEduClassifier(
model_inference_batch_size=256,
float_score_column="fineweb-edu-score-float", # Raw float scores
int_score_column="fineweb-edu-score-int", # Rounded integer scores
pred_column="fineweb-edu-score-label" # Quality labels
)
pipeline.add_stage(edu_classifier)
# Save the results
writer = JsonlWriter(path="edu_classified/")
pipeline.add_stage(writer)
# Execute pipeline
results = pipeline.run() # Uses XennaExecutor by default
FineWeb Mixtral and Nemotron Edu Classifiers#
Similar to the FineWeb Edu Classifier but trained with different annotation sources:
FineWebMixtralEduClassifier: Uses annotations from Mixtral 8x22B-Instruct
FineWebNemotronEduClassifier: Uses annotations from Nemotron-4-340B-Instruct
Both provide a quality label column marking scores above 2.5 as “high_quality”:
Quality Label Mapping#
Score Range |
Quality Label |
Description |
---|---|---|
0.0 - 2.5 |
|
Below average educational value |
2.5 - 5.0 |
|
Above average educational value |
from nemo_curator.pipeline import Pipeline
from nemo_curator.stages.text.io.reader import JsonlReader
from nemo_curator.stages.text.io.writer import JsonlWriter
from nemo_curator.stages.text.classifiers import FineWebMixtralEduClassifier # or FineWebNemotronEduClassifier
# Create pipeline
pipeline = Pipeline(name="fineweb_mixtral_edu_classification")
# Load dataset
reader = JsonlReader(
file_paths="web_documents/*.jsonl",
fields=["text", "id"]
)
pipeline.add_stage(reader)
# Apply the FineWeb Mixtral Edu classifier
classifier = FineWebMixtralEduClassifier(
float_score_column="fineweb-mixtral-edu-score-float", # Raw float scores
int_score_column="fineweb-mixtral-edu-score-int", # Rounded integer scores
pred_column="fineweb-mixtral-edu-score-label" # "high_quality" or "low_quality"
)
pipeline.add_stage(classifier)
# Save the results
writer = JsonlWriter(path="mixtral_edu_classified/")
pipeline.add_stage(writer)
# Execute pipeline
results = pipeline.run() # Uses XennaExecutor by default
Content Type Classifier#
Categorizes documents into 11 distinct speech types.
from nemo_curator.pipeline import Pipeline
from nemo_curator.stages.text.io.reader import JsonlReader
from nemo_curator.stages.text.io.writer import JsonlWriter
from nemo_curator.stages.text.classifiers import ContentTypeClassifier
# Create pipeline
pipeline = Pipeline(name="content_type_classification")
# Load dataset
reader = JsonlReader(
file_paths="content/",
fields=["text", "id"]
)
pipeline.add_stage(reader)
# Apply the Content Type classifier
classifier = ContentTypeClassifier(filter_by=["Blogs", "News"])
pipeline.add_stage(classifier)
# Save the results
writer = JsonlWriter(path="content_type_classified/")
pipeline.add_stage(writer)
# Execute pipeline
results = pipeline.run() # Uses XennaExecutor by default
Prompt Task and Complexity Classifier#
Classifies prompts by task type and complexity dimensions.
from nemo_curator.pipeline import Pipeline
from nemo_curator.stages.text.io.reader import JsonlReader
from nemo_curator.stages.text.io.writer import JsonlWriter
from nemo_curator.stages.text.classifiers import PromptTaskComplexityClassifier
# Create pipeline
pipeline = Pipeline(name="prompt_task_complexity_classification")
# Load dataset
reader = JsonlReader(
file_paths="prompts/",
fields=["text", "id"]
)
pipeline.add_stage(reader)
# Apply the Prompt Task Complexity classifier
classifier = PromptTaskComplexityClassifier()
pipeline.add_stage(classifier)
# Save the results
writer = JsonlWriter(path="prompt_complexity_classified/")
pipeline.add_stage(writer)
# Execute pipeline
results = pipeline.run() # Uses XennaExecutor by default
Scaling with Different Executors#
All NVIDIA NeMo Curator classifiers support different execution backends for enhanced scalability and performance. By default, pipelines use the XennaExecutor
, but you can choose different backends based on your computational requirements.
from nemo_curator.backends.xenna import XennaExecutor
from nemo_curator.pipeline import Pipeline
from nemo_curator.stages.text.classifiers import QualityClassifier
# Create pipeline with classifier
pipeline = Pipeline(name="classifier_pipeline")
pipeline.add_stage(read_stage)
pipeline.add_stage(QualityClassifier())
pipeline.add_stage(write_stage)
# Run with default Xenna executor (recommended)
executor = XennaExecutor(config={"execution_mode": "streaming"})
results = pipeline.run(executor)
For large-scale distributed classification tasks, consider using Ray-based executors or other backends. Refer to the Pipeline Execution Backends reference for detailed information about available executors, their configurations, and when to use each backend type.
Performance Optimization#
NVIDIA NeMo Curator’s distributed classifiers are optimized for high-throughput processing through several key features:
Intelligent Batching and Sequence Handling#
The classifiers optimize throughput through:
Length-based sorting: Input sequences are sorted by length when
sort_by_length=True
(default)Efficient batching: Similar-length sequences are grouped together to minimize padding overhead
GPU memory optimization: Batches are sized to maximize GPU utilization based on available memory
Integration with RAPIDS AI Ecosystem#
NeMo Curator leverages components from the RAPIDS AI ecosystem for accelerated processing:
GPU-accelerated tokenization: Fast text preprocessing on GPU when available
Optimized memory management: Smart allocation and deallocation of GPU resources
For more information about RAPIDS AI performance optimization libraries, see the rapidsai/crossfit repository.