Heuristic Filtering#

Heuristic filtering uses simple, rule-based metrics to identify and filter out low-quality documents from your dataset. NVIDIA NeMo Curator provides a variety of pre-built heuristic filters that can be configured and combined to meet your specific needs.

How It Works#

Heuristic filters examine specific attributes of text documents and apply predefined thresholds to determine document quality. Unlike classifier-based filtering, heuristic filters don’t require training data but rely on configurable thresholds and rules.

These filters assess quality using measurable document characteristics such as:

  • Document length (word or character count)

  • Punctuation ratios and patterns

  • Repetitive content detection

  • Language-specific patterns

  • Text completeness and coherence

For details on filter structure and the filtering process, refer to Data Processing Concepts.


Usage#

from nemo_curator.pipeline import Pipeline
from nemo_curator.stages.text.io.reader import JsonlReader
from nemo_curator.stages.text.io.writer import JsonlWriter
from nemo_curator.stages.text.modules import ScoreFilter
from nemo_curator.stages.text.filters import (
    WordCountFilter,
    RepeatingTopNGramsFilter,
    PunctuationFilter
)

# Create pipeline
pipeline = Pipeline(name="heuristic_filtering")

# Load your dataset
reader = JsonlReader(
    file_paths="input_data/",
    fields=["text", "id"]
)
pipeline.add_stage(reader)

# Add filter stages
pipeline.add_stage(ScoreFilter(
    score_fn=WordCountFilter(min_words=80),
    text_field="text",
    score_field="word_count"
))
pipeline.add_stage(ScoreFilter(
    score_fn=PunctuationFilter(max_num_sentences_without_endmark_ratio=0.85),
    text_field="text"
))
pipeline.add_stage(ScoreFilter(
    score_fn=RepeatingTopNGramsFilter(n=2, max_repeating_ngram_ratio=0.2),
    text_field="text"
))
pipeline.add_stage(ScoreFilter(
    score_fn=RepeatingTopNGramsFilter(n=3, max_repeating_ngram_ratio=0.18),
    text_field="text"
))
pipeline.add_stage(ScoreFilter(
    score_fn=RepeatingTopNGramsFilter(n=4, max_repeating_ngram_ratio=0.16),
    text_field="text"
))

# Add output stage
writer = JsonlWriter(path="high_quality_output/")
pipeline.add_stage(writer)

# Execute pipeline
results = pipeline.run()
# Example configuration for common heuristic filters
from nemo_curator.stages.text.filters import (
    WordCountFilter,
    PunctuationFilter,
    RepeatingTopNGramsFilter,
    SymbolsToWordsFilter,
    CommonEnglishWordsFilter
)

# Define filter configurations
filters_config = [
    {
        "filter": WordCountFilter(min_words=50, max_words=10000),
        "description": "Filter by word count"
    },
    {
        "filter": PunctuationFilter(max_num_sentences_without_endmark_ratio=0.85),
        "description": "Filter by punctuation patterns"
    },
    {
        "filter": RepeatingTopNGramsFilter(n=3, max_repeating_ngram_ratio=0.18),
        "description": "Filter repetitive content"
    },
    {
        "filter": SymbolsToWordsFilter(max_symbol_to_word_ratio=0.1),
        "description": "Filter by symbol ratio"
    }
]

# Apply filters in pipeline
for config in filters_config:
    pipeline.add_stage(ScoreFilter(
        score_fn=config["filter"],
        text_field="text"
    ))

Available Filters#

NeMo Curator includes more than 30 heuristic filters for assessing document quality. Below are the most commonly used filters with their parameters:

Text Length Filters#

Filter

Description

Key Parameters

Default Values

WordCountFilter

Filters by word count

min_words, max_words

min=50, max=100000

TokenCountFilter

Filters by token count

min_tokens, max_tokens

min=0, max=∞

MeanWordLengthFilter

Filters by average word length

min_mean_word_length, max_mean_word_length

min=3, max=10

LongWordFilter

Filters by presence of extremely long words

max_word_length

1000

Repetition Detection Filters#

Filter

Description

Key Parameters

Default Values

RepeatedLinesFilter

Detects repeated lines

max_repeated_line_fraction

0.7

RepeatedParagraphsFilter

Detects repeated paragraphs

max_repeated_paragraphs_ratio

0.7

RepeatingTopNGramsFilter

Detects excessive repetition of n-grams

n, max_repeating_ngram_ratio

n=2, ratio=0.2

RepeatingDuplicateNGramsFilter

Detects duplicate n-grams

n, max_repeating_duplicate_ngram_ratio

n=2, ratio=0.2

Character and Symbol Filters#

Filter

Description

Key Parameters

Default Values

NonAlphaNumericFilter

Limits non-alphanumeric content

max_non_alpha_numeric_to_text_ratio

0.25

SymbolsToWordsFilter

Limits symbols in text

max_symbol_to_word_ratio

0.1

NumbersFilter

Limits numeric content

max_number_to_text_ratio

0.15

UrlsFilter

Limits URL content

max_url_to_text_ratio

0.2

PunctuationFilter

Limits sentences without proper punctuation

max_num_sentences_without_endmark_ratio

0.85

WhiteSpaceFilter

Limits excessive whitespace

max_white_space_ratio

0.25

Content-specific Filters#

Filter

Description

Key Parameters

Default Values

CommonEnglishWordsFilter

Ensures text contains common words

min_num_common_words

2

WordsWithoutAlphabetsFilter

Limits words without alphabetic chars

min_words_with_alphabets

0.8

BulletsFilter

Limits bullet-point heavy content

max_bullet_lines_ratio

0.9

BoilerPlateStringFilter

Detects boilerplate text

max_boilerplate_string_ratio, remove_if_at_top_or_bottom

0.4, True

ParenthesesFilter

Limits parentheses content

max_parentheses_ratio

0.1

Special Purpose Filters#

Filter

Description

Key Parameters

Default Values

PornographicUrlsFilter

Detects URLs containing “porn” substring

None

N/A

EllipsisFilter

Limits excessive ellipses

max_num_lines_ending_with_ellipsis_ratio

0.3

HistogramFilter

Filters based on character distribution

threshold

0.8

SubstringFilter

Filters based on presence of specific substring in a position

substring, position

“”, “any”

Configuration#

# Sample filter configuration (simplified)
filters:
  - name: ScoreFilter
    filter:
      name: WordCountFilter
      min_words: 50
      max_words: 100000
    text_field: text
    score_field: word_count

  - name: ScoreFilter
    filter:
      name: PunctuationFilter
      max_num_sentences_without_endmark_ratio: 0.85
    text_field: text
    score_field: punctuation_ratio

  - name: ScoreFilter
    filter:
      name: RepeatingTopNGramsFilter
      n: 2
      max_repeating_ngram_ratio: 0.18
    text_field: text
    score_field: ngram_repetition

For non-English texts, you may need to adjust the filter parameters based on the specific characteristics of your target language.

Best Practices#

When building filter chains, follow these best practices:

# Efficient ordering - place fast filters first
from nemo_curator.pipeline import Pipeline
from nemo_curator.stages.text.modules import ScoreFilter
from nemo_curator.stages.text.filters import WordCountFilter, UrlsFilter, RepeatingTopNGramsFilter

pipeline = Pipeline(name="efficient_filtering")
# Fast filters first
pipeline.add_stage(ScoreFilter(score_fn=WordCountFilter(min_words=50), text_field="text"))
# Medium complexity filters
pipeline.add_stage(ScoreFilter(score_fn=UrlsFilter(), text_field="text"))
# Slow filters last
pipeline.add_stage(ScoreFilter(score_fn=RepeatingTopNGramsFilter(), text_field="text"))
# Optimize filter performance with proper configuration

# Configure executor for better performance
executor_config = {
    "execution_mode": "streaming",
    "cpu_allocation_percentage": 0.95,
    "logging_interval": 30
}

# Use custom executor configuration when needed
executor = XennaExecutor(config=executor_config)
results = pipeline.run(executor)

# Or use default configuration
# results = pipeline.run()
# More permissive (higher recall)
lenient_filter = WordCountFilter(min_words=10, max_words=100000)

# More strict (higher precision)
strict_filter = WordCountFilter(min_words=100, max_words=10000)
# Chinese text filter
from nemo_curator.stages.text.modules import ScoreFilter
from nemo_curator.stages.text.filters import SymbolsToWordsFilter

cn_filter = ScoreFilter(
    score_fn=SymbolsToWordsFilter(max_symbol_to_word_ratio=0.15, lang="zh"),
    text_field="text"
)
# Comprehensive quality filter pipeline
from nemo_curator.pipeline import Pipeline
from nemo_curator.stages.text.modules import ScoreFilter
from nemo_curator.stages.text.filters import (
    WordCountFilter, 
    PunctuationFilter, 
    CommonEnglishWordsFilter, 
    RepeatingTopNGramsFilter
)

quality_pipeline = Pipeline(name="comprehensive_quality")

# Basic text quality
quality_pipeline.add_stage(ScoreFilter(
    score_fn=WordCountFilter(min_words=50), text_field="text"
))
quality_pipeline.add_stage(ScoreFilter(
    score_fn=PunctuationFilter(max_num_sentences_without_endmark_ratio=0.85), text_field="text"
))

# Content quality
quality_pipeline.add_stage(ScoreFilter(
    score_fn=CommonEnglishWordsFilter(min_num_common_words=2), text_field="text"
))

# Repetition detection
quality_pipeline.add_stage(ScoreFilter(
    score_fn=RepeatingTopNGramsFilter(n=3, max_repeating_ngram_ratio=0.18), text_field="text"
))

Analyzing Filter Results#

When working with non-English data or tuning your filtering pipeline, it’s valuable to examine which filters are removing documents:

import pandas as pd

# Load scores from filter run
scores = pd.read_json("output/scores/scores.jsonl", lines=True)

# Analyze rejection reasons
rejection_counts = scores[scores["rejected"] == True].groupby("rejected_by").size()
print(f"Documents rejected by filter:\n{rejection_counts}")

# Analyze score distributions
import matplotlib.pyplot as plt
scores.hist(column="word_count", bins=50)
plt.title("Word Count Distribution")
plt.savefig("word_count_hist.png")

Performance Tuning#

For large datasets, consider these performance optimizations:

# Process large datasets efficiently using pipeline streaming

# Configure for streaming processing
executor_config = {
    "execution_mode": "streaming",
    "cpu_allocation_percentage": 0.8,
    "logging_interval": 60
}

# Use custom configuration for large datasets
executor = XennaExecutor(config=executor_config)
results = pipeline.run(executor)

# Default configuration works for most cases
# results = pipeline.run()
# Scale processing across multiple workers

# Configure for distributed processing
executor_config = {
    "execution_mode": "streaming",
    "cpu_allocation_percentage": 0.95,
    "max_workers_per_stage": 8
}

# Use custom configuration for distributed processing
executor = XennaExecutor(config=executor_config)
results = pipeline.run(executor)

# Default configuration uses single worker
# results = pipeline.run()
# Optimize pipeline stages for performance
from nemo_curator.stages.text.io.reader import JsonlReader

# Configure reader with optimal batch size
reader = JsonlReader(
    file_paths="large_dataset/*.jsonl",
    files_per_partition=4,  # Adjust based on file sizes
    fields=["text", "id"]
)

Remember that the goal of filtering is to improve the quality of your training data, not necessarily to remove as many documents as possible. Monitor your filtering results and adjust thresholds based on your specific data characteristics and downstream tasks.