GPU Processing Guide#
This guide explains how to use GPU acceleration in NVIDIA NeMo Curator for faster text data processing.
Setting Up GPU Support#
To use GPU acceleration, you’ll need:
NVIDIA GPU with CUDA support
RAPIDS libraries installed (cuDF, RMM)
PyTorch with CUDA support for model inference
Example: GPU-Accelerated Text Classification#
from nemo_curator.stages.text.classifiers import QualityClassifier
from nemo_curator.pipeline import Pipeline
from nemo_curator.tasks import DocumentBatch
import pandas as pd
# Create sample data
data = pd.DataFrame({
"text": ["This is high quality text.", "Poor quality text here."]
})
batch = DocumentBatch(data=data, task_id="test_task", dataset_name="test_dataset")
# Set up GPU-accelerated classifier
classifier = QualityClassifier(
model_inference_batch_size=256,
autocast=True # Enable mixed precision for faster inference
)
# Create and run pipeline
pipeline = Pipeline(name="test_pipeline")
pipeline.add_stage(classifier)
result = pipeline.run(initial_tasks=[batch])
print(result)
Example: GPU-Accelerated Fuzzy Deduplication#
from nemo_curator.stages.deduplication.fuzzy.workflow import FuzzyDeduplicationWorkflow
# Set up GPU-accelerated fuzzy deduplication
workflow = FuzzyDeduplicationWorkflow(
input_path="/path/to/input/data",
cache_path="/path/to/cache",
output_path="/path/to/output",
text_field="text",
# GPU-accelerated MinHash parameters
char_ngrams=24,
num_bands=20,
minhashes_per_band=13,
use_64_bit_hash=False
)
# Run deduplication workflow
workflow.run()
GPU-Accelerated Modules#
NVIDIA NeMo Curator provides these GPU-accelerated modules:
Data Processing#
Exact deduplication: GPU-optimized processing for duplicate detection
Fuzzy deduplication: GPU-accelerated MinHash computation for approximate duplicates
Semantic deduplication: GPU embeddings and similarity calculations for content-based deduplication
Text Classification#
Domain classification: English and multilingual content categorization
Quality classification: Content quality assessment using GPU-accelerated models
Safety models: AEGIS and Instruction Data Guard for content safety evaluation
Educational content: FineWeb models for educational value scoring
Content type classification: Automatic content type detection
Task and complexity classification: Instruction complexity assessment