Get Started with Image Curation#
This guide helps you set up and get started with NeMo Curator’s image curation capabilities. Follow these steps to prepare your environment and run your first image curation pipeline.
Prerequisites#
To use NeMo Curator’s image curation modules, ensure you meet the following requirements:
Python 3.10, 3.11, or 3.12
packaging >= 22.0
Ubuntu 22.04/20.04
NVIDIA GPU (required for all image modules)
Volta™ or higher (compute capability 7.0+)
CUDA 12 (or above)
Tip
If you don’t have uv
installed, refer to the Installation Guide for setup instructions, or install it quickly with:
curl -LsSf https://astral.sh/uv/0.8.22/install.sh | sh
source $HOME/.local/bin/env
Installation Options#
You can install NeMo Curator in three ways:
Install the image modules from PyPI:
uv pip install "nemo-curator[image_cuda12]"
Install the latest version directly from GitHub using uv:
git clone https://github.com/NVIDIA-NeMo/Curator.git
cd Curator
uv sync --extra image_cuda12
Activate the environment and run your code:
source .venv/bin/activate
python your_script.py
NeMo Curator is available as a standalone container:
# Pull the container
docker pull nvcr.io/nvidia/nemo-curator:25.09
# Run the container
docker run --gpus all -it --rm nvcr.io/nvidia/nemo-curator:25.09
See also
For details on container environments and configurations, see Container Environments.
Download Sample Configuration#
NeMo Curator provides a working image curation example in the Image Curation Tutorial. You can adapt this pipeline for your own datasets.
Set Up Data Directory#
Create directories to store your image datasets and models:
mkdir -p ~/nemo_curator/data/tar_archives
mkdir -p ~/nemo_curator/data/curated
mkdir -p ~/nemo_curator/models
For this example, you’ll need:
Tar Archives: JPEG images in
.tar
files (text and JSON files are ignored during loading)Model Directory: CLIP and classifier model weights (downloaded automatically on first run)
Basic Image Curation Example#
Here’s a simple example to get started with NeMo Curator’s image curation pipeline:
from nemo_curator.pipeline import Pipeline
from nemo_curator.backends.xenna import XennaExecutor
from nemo_curator.stages.file_partitioning import FilePartitioningStage
from nemo_curator.stages.image.io.image_reader import ImageReaderStage
from nemo_curator.stages.image.embedders.clip_embedder import ImageEmbeddingStage
from nemo_curator.stages.image.filters.aesthetic_filter import ImageAestheticFilterStage
from nemo_curator.stages.image.filters.nsfw_filter import ImageNSFWFilterStage
from nemo_curator.stages.image.io.image_writer import ImageWriterStage
# Create image curation pipeline
pipeline = Pipeline(name="image_curation", description="Basic image curation with quality filtering")
# Stage 1: Partition tar files for parallel processing
pipeline.add_stage(FilePartitioningStage(
file_paths="~/nemo_curator/data/tar_archives", # Path to your tar archive directory
files_per_partition=1,
file_extensions=[".tar"],
))
# Stage 2: Read images from tar files using DALI
pipeline.add_stage(ImageReaderStage(
task_batch_size=100,
verbose=True,
num_threads=8,
num_gpus_per_worker=0.25,
))
# Stage 3: Generate CLIP embeddings for images
pipeline.add_stage(ImageEmbeddingStage(
model_dir="~/nemo_curator/models", # Directory containing model weights
model_inference_batch_size=32,
num_gpus_per_worker=0.25,
remove_image_data=False,
verbose=True,
))
# Stage 4: Filter by aesthetic quality (keep images with score >= 0.5)
pipeline.add_stage(ImageAestheticFilterStage(
model_dir="~/nemo_curator/models",
score_threshold=0.5,
model_inference_batch_size=32,
num_gpus_per_worker=0.25,
verbose=True,
))
# Stage 5: Filter NSFW content (remove images with score >= 0.5)
pipeline.add_stage(ImageNSFWFilterStage(
model_dir="~/nemo_curator/models",
score_threshold=0.5,
model_inference_batch_size=32,
num_gpus_per_worker=0.25,
verbose=True,
))
# Stage 6: Save curated images to new tar archives
pipeline.add_stage(ImageWriterStage(
output_dir="~/nemo_curator/data/curated",
images_per_tar=1000,
remove_image_data=True,
verbose=True,
))
# Execute the pipeline
executor = XennaExecutor()
pipeline.run(executor)
Expected Output#
After running the pipeline, you’ll have:
~/nemo_curator/data/curated/
├── images-{hash}-000000.tar # Curated images (first shard)
├── images-{hash}-000000.parquet # Metadata for corresponding tar
├── images-{hash}-000001.tar # Curated images (second shard)
├── images-{hash}-000001.parquet # Metadata for corresponding tar
├── ... # Additional shards as needed
Output Format Details:
Tar Files: Contain high-quality
.jpg
files that passed both aesthetic and NSFW filteringParquet Files: Contain metadata for each corresponding tar file, including image paths, IDs, and processing scores
Naming Convention: Files use hash-based prefixes (e.g.,
images-a1b2c3d4e5f6-000000.tar
) for uniqueness across distributed processingScores: Processing metadata includes
aesthetic_score
andnsfw_score
stored in the Parquet files
Alternative: Using the Complete Tutorial#
For a more comprehensive example with data download and more configuration options, see:
# Download the complete tutorial
wget -O ~/nemo_curator/image_curation_example.py https://raw.githubusercontent.com/NVIDIA/NeMo-Curator/main/tutorials/image/getting-started/image_curation_example.py
# Run with your data
python ~/nemo_curator/image_curation_example.py \
--input-tar-dataset-dir ~/nemo_curator/data/tar_archives \
--output-dataset-dir ~/nemo_curator/data/curated \
--model-dir ~/nemo_curator/models \
--aesthetic-threshold 0.5 \
--nsfw-threshold 0.5
Next Steps#
Explore the Image Curation documentation for more advanced processing techniques:
Tar Archive Loading - Learn about loading JPEG images from tar files
CLIP Embeddings - Understand embedding generation
Quality Filtering - Advanced aesthetic and NSFW filtering
Complete Tutorial - Full working example with data download