Source code for physicsnemo.models.diffusion.preconditioning

# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Preconditioning schemes used in the paper"Elucidating the Design Space of
Diffusion-Based Generative Models".
"""

import importlib
import warnings
from dataclasses import dataclass
from typing import List, Literal, Tuple, Union

import numpy as np
import torch

from physicsnemo.models.diffusion.utils import _wrapped_property
from physicsnemo.models.meta import ModelMetaData
from physicsnemo.models.module import Module

network_module = importlib.import_module("physicsnemo.models.diffusion")


[docs] @dataclass class VPPrecondMetaData(ModelMetaData): """VPPrecond meta data""" name: str = "VPPrecond" # Optimization jit: bool = False cuda_graphs: bool = False amp_cpu: bool = False amp_gpu: bool = True torch_fx: bool = False # Data type bf16: bool = False # Inference onnx: bool = False # Physics informed func_torch: bool = False auto_grad: bool = False
[docs] class VPPrecond(Module): """ Preconditioning corresponding to the variance preserving (VP) formulation. Parameters ---------- img_resolution : int Image resolution. img_channels : int Number of color channels. label_dim : int Number of class labels, 0 = unconditional, by default 0. use_fp16 : bool Execute the underlying model at FP16 precision?, by default False. beta_d : float Extent of the noise level schedule, by default 19.9. beta_min : float Initial slope of the noise level schedule, by default 0.1. M : int Original number of timesteps in the DDPM formulation, by default 1000. epsilon_t : float Minimum t-value used during training, by default 1e-5. model_type :str Class name of the underlying model, by default "SongUNet". **model_kwargs : dict Keyword arguments for the underlying model. Note ---- Reference: Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S. and Poole, B., 2020. Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456. """ def __init__( self, img_resolution: int, img_channels: int, label_dim: int = 0, use_fp16: bool = False, beta_d: float = 19.9, beta_min: float = 0.1, M: int = 1000, epsilon_t: float = 1e-5, model_type: str = "SongUNet", **model_kwargs: dict, ): super().__init__(meta=VPPrecondMetaData) self.img_resolution = img_resolution self.img_channels = img_channels self.label_dim = label_dim self.use_fp16 = use_fp16 self.beta_d = beta_d self.beta_min = beta_min self.M = M self.epsilon_t = epsilon_t self.sigma_min = float(self.sigma(epsilon_t)) self.sigma_max = float(self.sigma(1)) model_class = getattr(network_module, model_type) self.model = model_class( img_resolution=img_resolution, in_channels=img_channels, out_channels=img_channels, label_dim=label_dim, **model_kwargs, ) # TODO needs better handling
[docs] def forward(self, x, sigma, class_labels=None, force_fp32=False, **model_kwargs): x = x.to(torch.float32) sigma = sigma.to(torch.float32).reshape(-1, 1, 1, 1) class_labels = ( None if self.label_dim == 0 else torch.zeros([1, self.label_dim], device=x.device) if class_labels is None else class_labels.to(torch.float32).reshape(-1, self.label_dim) ) dtype = ( torch.float16 if (self.use_fp16 and not force_fp32 and x.device.type == "cuda") else torch.float32 ) c_skip = 1 c_out = -sigma c_in = 1 / (sigma**2 + 1).sqrt() c_noise = (self.M - 1) * self.sigma_inv(sigma) F_x = self.model( (c_in * x).to(dtype), c_noise.flatten(), class_labels=class_labels, **model_kwargs, ) if (F_x.dtype != dtype) and not torch.is_autocast_enabled(): raise ValueError( f"Expected the dtype to be {dtype}, but got {F_x.dtype} instead." ) D_x = c_skip * x + c_out * F_x.to(torch.float32) return D_x
[docs] def sigma(self, t: Union[float, torch.Tensor]): """ Compute the sigma(t) value for a given t based on the VP formulation. The function calculates the noise level schedule for the diffusion process based on the given parameters `beta_d` and `beta_min`. Parameters ---------- t : Union[float, torch.Tensor] The timestep or set of timesteps for which to compute sigma(t). Returns ------- torch.Tensor The computed sigma(t) value(s). """ t = torch.as_tensor(t) return ((0.5 * self.beta_d * (t**2) + self.beta_min * t).exp() - 1).sqrt()
[docs] def sigma_inv(self, sigma: Union[float, torch.Tensor]): """ Compute the inverse of the sigma function for a given sigma. This function effectively calculates t from a given sigma(t) based on the parameters `beta_d` and `beta_min`. Parameters ---------- sigma : Union[float, torch.Tensor] The sigma(t) value or set of sigma(t) values for which to compute the inverse. Returns ------- torch.Tensor The computed t value(s) corresponding to the provided sigma(t). """ sigma = torch.as_tensor(sigma) return ( (self.beta_min**2 + 2 * self.beta_d * (1 + sigma**2).log()).sqrt() - self.beta_min ) / self.beta_d
[docs] def round_sigma(self, sigma: Union[float, List, torch.Tensor]): """ Convert a given sigma value(s) to a tensor representation. Parameters ---------- sigma : Union[float list, torch.Tensor] The sigma value(s) to convert. Returns ------- torch.Tensor The tensor representation of the provided sigma value(s). """ return torch.as_tensor(sigma)
[docs] @dataclass class VEPrecondMetaData(ModelMetaData): """VEPrecond meta data""" name: str = "VEPrecond" # Optimization jit: bool = False cuda_graphs: bool = False amp_cpu: bool = False amp_gpu: bool = True torch_fx: bool = False # Data type bf16: bool = False # Inference onnx: bool = False # Physics informed func_torch: bool = False auto_grad: bool = False
[docs] class VEPrecond(Module): """ Preconditioning corresponding to the variance exploding (VE) formulation. Parameters ---------- img_resolution : int Image resolution. img_channels : int Number of color channels. label_dim : int Number of class labels, 0 = unconditional, by default 0. use_fp16 : bool Execute the underlying model at FP16 precision?, by default False. sigma_min : float Minimum supported noise level, by default 0.02. sigma_max : float Maximum supported noise level, by default 100.0. model_type :str Class name of the underlying model, by default "SongUNet". **model_kwargs : dict Keyword arguments for the underlying model. Note ---- Reference: Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S. and Poole, B., 2020. Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456. """ def __init__( self, img_resolution: int, img_channels: int, label_dim: int = 0, use_fp16: bool = False, sigma_min: float = 0.02, sigma_max: float = 100.0, model_type: str = "SongUNet", **model_kwargs: dict, ): super().__init__(meta=VEPrecondMetaData) self.img_resolution = img_resolution self.img_channels = img_channels self.label_dim = label_dim self.use_fp16 = use_fp16 self.sigma_min = sigma_min self.sigma_max = sigma_max model_class = getattr(network_module, model_type) self.model = model_class( img_resolution=img_resolution, in_channels=img_channels, out_channels=img_channels, label_dim=label_dim, **model_kwargs, ) # TODO needs better handling
[docs] def forward(self, x, sigma, class_labels=None, force_fp32=False, **model_kwargs): x = x.to(torch.float32) sigma = sigma.to(torch.float32).reshape(-1, 1, 1, 1) class_labels = ( None if self.label_dim == 0 else torch.zeros([1, self.label_dim], device=x.device) if class_labels is None else class_labels.to(torch.float32).reshape(-1, self.label_dim) ) dtype = ( torch.float16 if (self.use_fp16 and not force_fp32 and x.device.type == "cuda") else torch.float32 ) c_skip = 1 c_out = sigma c_in = 1 c_noise = (0.5 * sigma).log() F_x = self.model( (c_in * x).to(dtype), c_noise.flatten(), class_labels=class_labels, **model_kwargs, ) if (F_x.dtype != dtype) and not torch.is_autocast_enabled(): raise ValueError( f"Expected the dtype to be {dtype}, but got {F_x.dtype} instead." ) D_x = c_skip * x + c_out * F_x.to(torch.float32) return D_x
[docs] def round_sigma(self, sigma: Union[float, List, torch.Tensor]): """ Convert a given sigma value(s) to a tensor representation. Parameters ---------- sigma : Union[float list, torch.Tensor] The sigma value(s) to convert. Returns ------- torch.Tensor The tensor representation of the provided sigma value(s). """ return torch.as_tensor(sigma)
[docs] @dataclass class iDDPMPrecondMetaData(ModelMetaData): """iDDPMPrecond meta data""" name: str = "iDDPMPrecond" # Optimization jit: bool = False cuda_graphs: bool = False amp_cpu: bool = False amp_gpu: bool = True torch_fx: bool = False # Data type bf16: bool = False # Inference onnx: bool = False # Physics informed func_torch: bool = False auto_grad: bool = False
[docs] class iDDPMPrecond(Module): """ Preconditioning corresponding to the improved DDPM (iDDPM) formulation. Parameters ---------- img_resolution : int Image resolution. img_channels : int Number of color channels. label_dim : int Number of class labels, 0 = unconditional, by default 0. use_fp16 : bool Execute the underlying model at FP16 precision?, by default False. C_1 : float Timestep adjustment at low noise levels., by default 0.001. C_2 : float Timestep adjustment at high noise levels., by default 0.008. M: int Original number of timesteps in the DDPM formulation, by default 1000. model_type :str Class name of the underlying model, by default "DhariwalUNet". **model_kwargs : dict Keyword arguments for the underlying model. Note ---- Reference: Nichol, A.Q. and Dhariwal, P., 2021, July. Improved denoising diffusion probabilistic models. In International Conference on Machine Learning (pp. 8162-8171). PMLR. """ def __init__( self, img_resolution, img_channels, label_dim=0, use_fp16=False, C_1=0.001, C_2=0.008, M=1000, model_type="DhariwalUNet", **model_kwargs, ): super().__init__(meta=iDDPMPrecondMetaData) self.img_resolution = img_resolution self.img_channels = img_channels self.label_dim = label_dim self.use_fp16 = use_fp16 self.C_1 = C_1 self.C_2 = C_2 self.M = M model_class = getattr(network_module, model_type) self.model = model_class( img_resolution=img_resolution, in_channels=img_channels, out_channels=img_channels * 2, label_dim=label_dim, **model_kwargs, ) # TODO needs better handling u = torch.zeros(M + 1) for j in range(M, 0, -1): # M, ..., 1 u[j - 1] = ( (u[j] ** 2 + 1) / (self.alpha_bar(j - 1) / self.alpha_bar(j)).clip(min=C_1) - 1 ).sqrt() self.register_buffer("u", u) self.sigma_min = float(u[M - 1]) self.sigma_max = float(u[0])
[docs] def forward(self, x, sigma, class_labels=None, force_fp32=False, **model_kwargs): x = x.to(torch.float32) sigma = sigma.to(torch.float32).reshape(-1, 1, 1, 1) class_labels = ( None if self.label_dim == 0 else torch.zeros([1, self.label_dim], device=x.device) if class_labels is None else class_labels.to(torch.float32).reshape(-1, self.label_dim) ) dtype = ( torch.float16 if (self.use_fp16 and not force_fp32 and x.device.type == "cuda") else torch.float32 ) c_skip = 1 c_out = -sigma c_in = 1 / (sigma**2 + 1).sqrt() c_noise = ( self.M - 1 - self.round_sigma(sigma, return_index=True).to(torch.float32) ) F_x = self.model( (c_in * x).to(dtype), c_noise.flatten(), class_labels=class_labels, **model_kwargs, ) if (F_x.dtype != dtype) and not torch.is_autocast_enabled(): raise ValueError( f"Expected the dtype to be {dtype}, but got {F_x.dtype} instead." ) D_x = c_skip * x + c_out * F_x[:, : self.img_channels].to(torch.float32) return D_x
[docs] def alpha_bar(self, j): """ Compute the alpha_bar(j) value for a given j based on the iDDPM formulation. Parameters ---------- j : Union[int, torch.Tensor] The timestep or set of timesteps for which to compute alpha_bar(j). Returns ------- torch.Tensor The computed alpha_bar(j) value(s). """ j = torch.as_tensor(j) return (0.5 * np.pi * j / self.M / (self.C_2 + 1)).sin() ** 2
[docs] def round_sigma(self, sigma, return_index=False): """ Round the provided sigma value(s) to the nearest value(s) in a pre-defined set `u`. Parameters ---------- sigma : Union[float, list, torch.Tensor] The sigma value(s) to round. return_index : bool, optional Whether to return the index/indices of the rounded value(s) in `u` instead of the rounded value(s) themselves, by default False. Returns ------- torch.Tensor The rounded sigma value(s) or their index/indices in `u`, depending on the value of `return_index`. """ sigma = torch.as_tensor(sigma) index = torch.cdist( sigma.to(self.u.device).to(torch.float32).reshape(1, -1, 1), self.u.reshape(1, -1, 1), ).argmin(2) result = index if return_index else self.u[index.flatten()].to(sigma.dtype) return result.reshape(sigma.shape).to(sigma.device)
[docs] @dataclass class EDMPrecondMetaData(ModelMetaData): """EDMPrecond meta data""" name: str = "EDMPrecond" # Optimization jit: bool = False cuda_graphs: bool = False amp_cpu: bool = False amp_gpu: bool = True torch_fx: bool = False # Data type bf16: bool = False # Inference onnx: bool = False # Physics informed func_torch: bool = False auto_grad: bool = False
[docs] class EDMPrecond(Module): """ Improved preconditioning proposed in the paper "Elucidating the Design Space of Diffusion-Based Generative Models" (EDM) Parameters ---------- img_resolution : int Image resolution. img_channels : int Number of color channels (for both input and output). If your model requires a different number of input or output chanels, override this by passing either of the optional img_in_channels or img_out_channels args label_dim : int Number of class labels, 0 = unconditional, by default 0. use_fp16 : bool Execute the underlying model at FP16 precision?, by default False. sigma_min : float Minimum supported noise level, by default 0.0. sigma_max : float Maximum supported noise level, by default inf. sigma_data : float Expected standard deviation of the training data, by default 0.5. model_type :str Class name of the underlying model, by default "DhariwalUNet". img_in_channels: int Optional setting for when number of input channels =/= number of output channels. If set, will override img_channels for the input This is useful in the case of additional (conditional) channels img_out_channels: int Optional setting for when number of input channels =/= number of output channels. If set, will override img_channels for the output **model_kwargs : dict Keyword arguments for the underlying model. Note ---- Reference: Karras, T., Aittala, M., Aila, T. and Laine, S., 2022. Elucidating the design space of diffusion-based generative models. Advances in Neural Information Processing Systems, 35, pp.26565-26577. """ def __init__( self, img_resolution, img_channels, label_dim=0, use_fp16=False, sigma_min=0.0, sigma_max=float("inf"), sigma_data=0.5, model_type="DhariwalUNet", img_in_channels=None, img_out_channels=None, **model_kwargs, ): super().__init__(meta=EDMPrecondMetaData) self.img_resolution = img_resolution if img_in_channels is not None: img_in_channels = img_in_channels else: img_in_channels = img_channels if img_out_channels is not None: img_out_channels = img_out_channels else: img_out_channels = img_channels self.label_dim = label_dim self.use_fp16 = use_fp16 self.sigma_min = sigma_min self.sigma_max = sigma_max self.sigma_data = sigma_data model_class = getattr(network_module, model_type) self.model = model_class( img_resolution=img_resolution, in_channels=img_in_channels, out_channels=img_out_channels, label_dim=label_dim, **model_kwargs, ) # TODO needs better handling
[docs] def forward( self, x, sigma, condition=None, class_labels=None, force_fp32=False, **model_kwargs, ): x = x.to(torch.float32) sigma = sigma.to(torch.float32).reshape(-1, 1, 1, 1) class_labels = ( None if self.label_dim == 0 else torch.zeros([1, self.label_dim], device=x.device) if class_labels is None else class_labels.to(torch.float32).reshape(-1, self.label_dim) ) dtype = ( torch.float16 if (self.use_fp16 and not force_fp32 and x.device.type == "cuda") else torch.float32 ) c_skip = self.sigma_data**2 / (sigma**2 + self.sigma_data**2) c_out = sigma * self.sigma_data / (sigma**2 + self.sigma_data**2).sqrt() c_in = 1 / (self.sigma_data**2 + sigma**2).sqrt() c_noise = sigma.log() / 4 arg = c_in * x if condition is not None: arg = torch.cat([arg, condition], dim=1) F_x = self.model( arg.to(dtype), c_noise.flatten(), class_labels=class_labels, **model_kwargs, ) if (F_x.dtype != dtype) and not torch.is_autocast_enabled(): raise ValueError( f"Expected the dtype to be {dtype}, but got {F_x.dtype} instead." ) D_x = c_skip * x + c_out * F_x.to(torch.float32) return D_x
[docs] @staticmethod def round_sigma(sigma: Union[float, List, torch.Tensor]): """ Convert a given sigma value(s) to a tensor representation. Parameters ---------- sigma : Union[float list, torch.Tensor] The sigma value(s) to convert. Returns ------- torch.Tensor The tensor representation of the provided sigma value(s). """ return torch.as_tensor(sigma)
[docs] @dataclass class EDMPrecondSuperResolutionMetaData(ModelMetaData): """EDMPrecondSuperResolution meta data""" name: str = "EDMPrecondSuperResolution" # Optimization jit: bool = False cuda_graphs: bool = False amp_cpu: bool = False amp_gpu: bool = True torch_fx: bool = False # Data type bf16: bool = False # Inference onnx: bool = False # Physics informed func_torch: bool = False auto_grad: bool = False
[docs] class EDMPrecondSuperResolution(Module): """ Improved preconditioning proposed in the paper "Elucidating the Design Space of Diffusion-Based Generative Models" (EDM). This is a variant of `EDMPrecond` that is specifically designed for super-resolution tasks. It wraps a neural network that predicts the denoised high-resolution image given a noisy high-resolution image, and additional conditioning that includes a low-resolution image, and a noise level. Parameters ---------- img_resolution : Union[int, Tuple[int, int]] Spatial resolution :math:`(H, W)` of the image. If a single int is provided, the image is assumed to be square. img_in_channels : int Number of input channels in the low-resolution input image. img_out_channels : int Number of output channels in the high-resolution output image. use_fp16 : bool, optional Whether to use half-precision floating point (FP16) for model execution, by default False. model_type : str, optional Class name of the underlying model. Must be one of the following: 'SongUNet', 'SongUNetPosEmbd', 'SongUNetPosLtEmbd', 'DhariwalUNet'. Defaults to 'SongUNetPosEmbd'. sigma_data : float, optional Expected standard deviation of the training data, by default 0.5. sigma_min : float, optional Minimum supported noise level, by default 0.0. sigma_max : float, optional Maximum supported noise level, by default inf. **model_kwargs : dict Keyword arguments passed to the underlying model `__init__` method. See Also -------- For information on model types and their usage: :class:`~physicsnemo.models.diffusion.SongUNet`: Basic U-Net for diffusion models :class:`~physicsnemo.models.diffusion.SongUNetPosEmbd`: U-Net with positional embeddings :class:`~physicsnemo.models.diffusion.SongUNetPosLtEmbd`: U-Net with positional and lead-time embeddings Please refer to the documentation of these classes for details on how to call and use these models directly. Note ---- References: - Karras, T., Aittala, M., Aila, T. and Laine, S., 2022. Elucidating the design space of diffusion-based generative models. Advances in Neural Information Processing Systems, 35, pp.26565-26577. - Mardani, M., Brenowitz, N., Cohen, Y., Pathak, J., Chen, C.Y., Liu, C.C.,Vahdat, A., Kashinath, K., Kautz, J. and Pritchard, M., 2023. Generative Residual Diffusion Modeling for Km-scale Atmospheric Downscaling. arXiv preprint arXiv:2309.15214. """ # Classes that can be wrapped by this UNet class. _wrapped_classes = { "SongUNetPosEmbd", "SongUNetPosLtEmbd", "SongUNet", "DhariwalUNet", } # Arguments of the __init__ method that can be overridden with the # ``Module.from_checkpoint`` method. Here, since we use splatted arguments # for the wrapped model instance, we allow overriding of any overridable # argument of the wrapped classes. _overridable_args = set.union( *( getattr(getattr(network_module, cls_name), "_overridable_args", set()) for cls_name in _wrapped_classes ) ) def __init__( self, img_resolution: Union[int, Tuple[int, int]], img_in_channels: int, img_out_channels: int, use_fp16: bool = False, model_type: Literal[ "SongUNetPosEmbd", "SongUNetPosLtEmbd", "SongUNet", "DhariwalUNet" ] = "SongUNetPosEmbd", sigma_data: float = 0.5, sigma_min=0.0, sigma_max=float("inf"), **model_kwargs: dict, ): super().__init__(meta=EDMPrecondSuperResolutionMetaData) # Validation if model_type not in self._wrapped_classes: raise ValueError( f"Model type '{model_type}' is not supported. " f"Must be one of: {', '.join(self._wrapped_classes)}" ) self.img_resolution = img_resolution self.img_in_channels = img_in_channels self.img_out_channels = img_out_channels self.sigma_data = sigma_data self.sigma_min = sigma_min self.sigma_max = sigma_max model_class = getattr(network_module, model_type) self.model = model_class( img_resolution=img_resolution, in_channels=img_in_channels + img_out_channels, out_channels=img_out_channels, **model_kwargs, ) # TODO needs better handling self.scaling_fn = self._scaling_fn self.use_fp16 = use_fp16 @property def use_fp16(self): """ bool: Whether the model uses float16 precision. Returns ------- bool True if the model is in float16 mode, False otherwise. """ return self._use_fp16 @use_fp16.setter def use_fp16(self, value: bool): """ Set whether the model should use float16 precision. Parameters ---------- value : bool If True, moves the model to torch.float16. If False, moves to torch.float32. Raises ------ ValueError If `value` is not a boolean. """ # NOTE: allow 0/1 values for older checkpoints if not (isinstance(value, bool) or value in [0, 1]): raise ValueError( f"`use_fp16` must be a boolean, but got {type(value).__name__}." ) self._use_fp16 = value if value: self.to(torch.float16) else: self.to(torch.float32) @staticmethod def _scaling_fn( x: torch.Tensor, img_lr: torch.Tensor, c_in: torch.Tensor ) -> torch.Tensor: """ Scale input tensors by first scaling the high-resolution tensor and then concatenating with the low-resolution tensor. Parameters ---------- x : torch.Tensor Noisy high-resolution image of shape (B, C_hr, H, W). img_lr : torch.Tensor Low-resolution image of shape (B, C_lr, H, W). c_in : torch.Tensor Scaling factor of shape (B, 1, 1, 1). Returns ------- torch.Tensor Scaled and concatenated tensor of shape (B, C_in+C_out, H, W). """ return torch.cat([c_in * x, img_lr.to(x.dtype)], dim=1) # Properties delegated to the wrapped model amp_mode = _wrapped_property( "amp_mode", "model", "Set to ``True`` when using automatic mixed precision.", ) profile_mode = _wrapped_property( "profile_mode", "model", "Set to ``True`` to enable profiling of the wrapped model.", )
[docs] def forward( self, x: torch.Tensor, img_lr: torch.Tensor, sigma: torch.Tensor, force_fp32: bool = False, **model_kwargs: dict, ) -> torch.Tensor: """ Forward pass of the EDMPrecondSuperResolution model wrapper. This method applies the EDM preconditioning to compute the denoised image from a noisy high-resolution image and low-resolution conditioning image. Parameters ---------- x : torch.Tensor Noisy high-resolution image of shape (B, C_hr, H, W). The number of channels `C_hr` should be equal to `img_out_channels`. img_lr : torch.Tensor Low-resolution conditioning image of shape (B, C_lr, H, W). The number of channels `C_lr` should be equal to `img_in_channels`. sigma : torch.Tensor Noise level of shape (B) or (B, 1) or (B, 1, 1, 1). force_fp32 : bool, optional Whether to force FP32 precision regardless of the `use_fp16` attribute, by default False. **model_kwargs : dict Additional keyword arguments to pass to the underlying model `self.model` forward method. Returns ------- torch.Tensor Denoised high-resolution image of shape (B, C_hr, H, W). Raises ------ ValueError If the model output dtype doesn't match the expected dtype. """ # Concatenate input channels x = x.to(torch.float32) sigma = sigma.to(torch.float32).reshape(-1, 1, 1, 1) dtype = ( torch.float16 if (self.use_fp16 and not force_fp32 and x.device.type == "cuda") else torch.float32 ) c_skip = self.sigma_data**2 / (sigma**2 + self.sigma_data**2) c_out = sigma * self.sigma_data / (sigma**2 + self.sigma_data**2).sqrt() c_in = 1 / (self.sigma_data**2 + sigma**2).sqrt() c_noise = sigma.log() / 4 if img_lr is None: arg = c_in * x else: arg = self.scaling_fn(x, img_lr, c_in) arg = arg.to(dtype) F_x = self.model( arg, c_noise.flatten(), class_labels=None, **model_kwargs, ) if (F_x.dtype != dtype) and not torch.is_autocast_enabled(): raise ValueError( f"Expected the dtype to be {dtype}, but got {F_x.dtype} instead." ) D_x = c_skip * x + c_out * F_x.to(torch.float32) return D_x
[docs] @staticmethod def round_sigma(sigma: Union[float, List, torch.Tensor]) -> torch.Tensor: """ Convert a given sigma value(s) to a tensor representation. Parameters ---------- sigma : Union[float, List, torch.Tensor] Sigma value(s) to convert. Returns ------- torch.Tensor Tensor representation of sigma values. See Also -------- EDMPrecond.round_sigma """ return EDMPrecond.round_sigma(sigma)
# NOTE: This is a deprecated version of the EDMPrecondSuperResolution model. # This was used to maintain backwards compatibility and allow loading old models.
[docs] @dataclass class EDMPrecondSRMetaData(ModelMetaData): """EDMPrecondSR meta data""" name: str = "EDMPrecondSR" # Optimization jit: bool = False cuda_graphs: bool = False amp_cpu: bool = False amp_gpu: bool = True torch_fx: bool = False # Data type bf16: bool = False # Inference onnx: bool = False # Physics informed func_torch: bool = False auto_grad: bool = False
[docs] class EDMPrecondSR(EDMPrecondSuperResolution): """ NOTE: This is a deprecated version of the EDMPrecondSuperResolution model. This was used to maintain backwards compatibility and allow loading old models. Please use the EDMPrecondSuperResolution model instead. Improved preconditioning proposed in the paper "Elucidating the Design Space of Diffusion-Based Generative Models" (EDM) for super-resolution tasks Parameters ---------- img_resolution : int Image resolution. img_channels : int Number of color channels (deprecated, not used). img_in_channels : int Number of input color channels. img_out_channels : int Number of output color channels. use_fp16 : bool Execute the underlying model at FP16 precision?, by default False. sigma_min : float Minimum supported noise level, by default 0.0. sigma_max : float Maximum supported noise level, by default inf. sigma_data : float Expected standard deviation of the training data, by default 0.5. model_type :str Class name of the underlying model, by default "SongUNetPosEmbd". scale_cond_input : bool Whether to scale the conditional input (deprecated), by default True. **model_kwargs : dict Keyword arguments for the underlying model. Note ---- References: - Karras, T., Aittala, M., Aila, T. and Laine, S., 2022. Elucidating the design space of diffusion-based generative models. Advances in Neural Information Processing Systems, 35, pp.26565-26577. - Mardani, M., Brenowitz, N., Cohen, Y., Pathak, J., Chen, C.Y., Liu, C.C.,Vahdat, A., Kashinath, K., Kautz, J. and Pritchard, M., 2023. Generative Residual Diffusion Modeling for Km-scale Atmospheric Downscaling. arXiv preprint arXiv:2309.15214. """ def __init__( self, img_resolution, img_channels, # deprecated img_in_channels, img_out_channels, use_fp16=False, sigma_min=0.0, sigma_max=float("inf"), sigma_data=0.5, model_type="SongUNetPosEmbd", scale_cond_input=True, # deprecated **model_kwargs, ): warnings.warn( "EDMPrecondSR is deprecated and will be removed in a future version. " "Please use EDMPrecondSuperResolution instead.", DeprecationWarning, stacklevel=2, ) super().__init__( img_resolution=img_resolution, img_in_channels=img_in_channels, img_out_channels=img_out_channels, use_fp16=use_fp16, sigma_min=sigma_min, sigma_max=sigma_max, sigma_data=sigma_data, model_type=model_type, **model_kwargs, ) if scale_cond_input: warnings.warn( "The `scale_cond_input=True` option does not properly scale the conditional input " "and is deprecated. It is highly recommended to set `scale_cond_input=False`. " "However, for loading a checkpoint previously trained with `scale_cond_input=True`, " "this flag must be set to `True` to ensure compatibility. " "For more details, see https://github.com/NVIDIA/modulus/issues/229.", DeprecationWarning, ) self.scaling_fn = self._legacy_scaling_fn # Store deprecated parameters for backward compatibility self.img_channels = img_channels self.scale_cond_input = scale_cond_input @staticmethod def _legacy_scaling_fn( x: torch.Tensor, img_lr: torch.Tensor, c_in: torch.Tensor ) -> torch.Tensor: """ This function does not properly scale the conditional input (see https://github.com/NVIDIA/modulus/issues/229) and will be deprecated. Concatenate and scale the high-resolution and low-resolution tensors. Parameters ---------- x : torch.Tensor Noisy high-resolution image of shape (B, C_hr, H, W). img_lr : torch.Tensor Low-resolution image of shape (B, C_lr, H, W). c_in : torch.Tensor Scaling factor of shape (B, 1, 1, 1). Returns ------- torch.Tensor Scaled and concatenated tensor of shape (B, C_in+C_out, H, W). """ return c_in * torch.cat([x, img_lr.to(x.dtype)], dim=1)
[docs] def forward( self, x, img_lr, sigma, force_fp32=False, **model_kwargs, ): """ Forward pass of the EDMPrecondSR model wrapper. Parameters ---------- x : torch.Tensor Noisy high-resolution image of shape (B, C_hr, H, W). img_lr : torch.Tensor Low-resolution conditioning image of shape (B, C_lr, H, W). sigma : torch.Tensor Noise level of shape (B) or (B, 1) or (B, 1, 1, 1). force_fp32 : bool, optional Whether to force FP32 precision regardless of the `use_fp16` attribute, by default False. **model_kwargs : dict Additional keyword arguments to pass to the underlying model. Returns ------- torch.Tensor Denoised high-resolution image of shape (B, C_hr, H, W). """ return super().forward( x=x, img_lr=img_lr, sigma=sigma, force_fp32=force_fp32, **model_kwargs )
[docs] class VEPrecond_dfsr(torch.nn.Module): """ Preconditioning for dfsr model, modified from class VEPrecond, where the input argument 'sigma' in forward propagation function is used to receive the timestep of the backward diffusion process. Parameters ---------- img_resolution : int Image resolution. img_channels : int Number of color channels. label_dim : int Number of class labels, 0 = unconditional, by default 0. use_fp16 : bool Execute the underlying model at FP16 precision?, by default False. sigma_min : float Minimum supported noise level, by default 0.02. sigma_max : float Maximum supported noise level, by default 100.0. model_type :str Class name of the underlying model, by default "SongUNet". **model_kwargs : dict Keyword arguments for the underlying model. Note ---- Reference: Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. Advances in neural information processing systems. 2020;33:6840-51. """ def __init__( self, img_resolution: int, img_channels: int, label_dim: int = 0, use_fp16: bool = False, sigma_min: float = 0.02, sigma_max: float = 100.0, dataset_mean: float = 5.85e-05, dataset_scale: float = 4.79, model_type: str = "SongUNet", **model_kwargs: dict, ): super().__init__() self.img_resolution = img_resolution self.img_channels = img_channels self.label_dim = label_dim self.use_fp16 = use_fp16 model_class = getattr(network_module, model_type) self.model = model_class( img_resolution=img_resolution, in_channels=self.img_channels, out_channels=img_channels, label_dim=label_dim, **model_kwargs, ) # TODO needs better handling
[docs] def forward(self, x, sigma, class_labels=None, force_fp32=False, **model_kwargs): x = x.to(torch.float32) sigma = sigma.to(torch.float32).reshape(-1, 1, 1, 1) # print("sigma: ", sigma) class_labels = ( None if self.label_dim == 0 else torch.zeros([1, self.label_dim], device=x.device) if class_labels is None else class_labels.to(torch.float32).reshape(-1, self.label_dim) ) dtype = ( torch.float16 if (self.use_fp16 and not force_fp32 and x.device.type == "cuda") else torch.float32 ) c_in = 1 c_noise = sigma # Change the definitation of c_noise to avoid -inf values for zero sigma F_x = self.model( (c_in * x).to(dtype), c_noise.flatten(), class_labels=class_labels, **model_kwargs, ) if F_x.dtype != dtype: raise ValueError( f"Expected the dtype to be {dtype}, but got {F_x.dtype} instead." ) return F_x
[docs] class VEPrecond_dfsr_cond(torch.nn.Module): """ Preconditioning for dfsr model with physics-informed conditioning input, modified from class VEPrecond, where the input argument 'sigma' in forward propagation function is used to receive the timestep of the backward diffusion process. The gradient of PDE residual with respect to the vorticity in the governing Navier-Stokes equation is computed as the physics-informed conditioning variable and is combined with the backward diffusion timestep before being sent to the underlying model for noise prediction. Parameters ---------- img_resolution : int Image resolution. img_channels : int Number of color channels. label_dim : int Number of class labels, 0 = unconditional, by default 0. use_fp16 : bool Execute the underlying model at FP16 precision?, by default False. sigma_min : float Minimum supported noise level, by default 0.02. sigma_max : float Maximum supported noise level, by default 100.0. model_type :str Class name of the underlying model, by default "SongUNet". **model_kwargs : dict Keyword arguments for the underlying model. Note ---- Reference: [1] Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S. and Poole, B., 2020. Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456. [2] Shu D, Li Z, Farimani AB. A physics-informed diffusion model for high-fidelity flow field reconstruction. Journal of Computational Physics. 2023 Apr 1;478:111972. """ def __init__( self, img_resolution: int, img_channels: int, label_dim: int = 0, use_fp16: bool = False, sigma_min: float = 0.02, sigma_max: float = 100.0, dataset_mean: float = 5.85e-05, dataset_scale: float = 4.79, model_type: str = "SongUNet", **model_kwargs: dict, ): super().__init__() self.img_resolution = img_resolution self.img_channels = img_channels self.label_dim = label_dim self.use_fp16 = use_fp16 model_class = getattr(network_module, model_type) self.model = model_class( img_resolution=img_resolution, in_channels=model_kwargs["model_channels"] * 2, out_channels=img_channels, label_dim=label_dim, **model_kwargs, ) # TODO needs better handling # modules to embed residual loss self.conv_in = torch.nn.Conv2d( img_channels, model_kwargs["model_channels"], kernel_size=3, stride=1, padding=1, padding_mode="circular", ) self.emb_conv = torch.nn.Sequential( torch.nn.Conv2d( img_channels, model_kwargs["model_channels"], kernel_size=1, stride=1, padding=0, ), torch.nn.GELU(), torch.nn.Conv2d( model_kwargs["model_channels"], model_kwargs["model_channels"], kernel_size=3, stride=1, padding=1, padding_mode="circular", ), ) self.dataset_mean = dataset_mean self.dataset_scale = dataset_scale
[docs] def forward(self, x, sigma, class_labels=None, force_fp32=False, **model_kwargs): x = x.to(torch.float32) sigma = sigma.to(torch.float32).reshape(-1, 1, 1, 1) class_labels = ( None if self.label_dim == 0 else torch.zeros([1, self.label_dim], device=x.device) if class_labels is None else class_labels.to(torch.float32).reshape(-1, self.label_dim) ) dtype = ( torch.float16 if (self.use_fp16 and not force_fp32 and x.device.type == "cuda") else torch.float32 ) c_in = 1 c_noise = sigma # Compute physics-informed conditioning information using vorticity residual dx = ( self.voriticity_residual((x * self.dataset_scale + self.dataset_mean)) / self.dataset_scale ) x = self.conv_in(x) cond_emb = self.emb_conv(dx) x = torch.cat((x, cond_emb), dim=1) F_x = self.model( (c_in * x).to(dtype), c_noise.flatten(), class_labels=class_labels, **model_kwargs, ) if F_x.dtype != dtype: raise ValueError( f"Expected the dtype to be {dtype}, but got {F_x.dtype} instead." ) return F_x
[docs] def voriticity_residual(self, w, re=1000.0, dt=1 / 32): """ Compute the gradient of PDE residual with respect to a given vorticity w using the spectrum method. Parameters ---------- w: torch.Tensor The fluid flow data sample (vorticity). re: float The value of Reynolds number used in the governing Navier-Stokes equation. dt: float Time step used to compute the time-derivative of vorticity included in the governing Navier-Stokes equation. Returns ------- torch.Tensor The computed vorticity gradient. """ # w [b t h w] w = w.clone() w.requires_grad_(True) nx = w.size(2) device = w.device w_h = torch.fft.fft2(w[:, 1:-1], dim=[2, 3]) # Wavenumbers in y-direction k_max = nx // 2 N = nx k_x = ( torch.cat( ( torch.arange(start=0, end=k_max, step=1, device=device), torch.arange(start=-k_max, end=0, step=1, device=device), ), 0, ) .reshape(N, 1) .repeat(1, N) .reshape(1, 1, N, N) ) k_y = ( torch.cat( ( torch.arange(start=0, end=k_max, step=1, device=device), torch.arange(start=-k_max, end=0, step=1, device=device), ), 0, ) .reshape(1, N) .repeat(N, 1) .reshape(1, 1, N, N) ) # Negative Laplacian in Fourier space lap = k_x**2 + k_y**2 lap[..., 0, 0] = 1.0 psi_h = w_h / lap u_h = 1j * k_y * psi_h v_h = -1j * k_x * psi_h wx_h = 1j * k_x * w_h wy_h = 1j * k_y * w_h wlap_h = -lap * w_h u = torch.fft.irfft2(u_h[..., :, : k_max + 1], dim=[2, 3]) v = torch.fft.irfft2(v_h[..., :, : k_max + 1], dim=[2, 3]) wx = torch.fft.irfft2(wx_h[..., :, : k_max + 1], dim=[2, 3]) wy = torch.fft.irfft2(wy_h[..., :, : k_max + 1], dim=[2, 3]) wlap = torch.fft.irfft2(wlap_h[..., :, : k_max + 1], dim=[2, 3]) advection = u * wx + v * wy wt = (w[:, 2:, :, :] - w[:, :-2, :, :]) / (2 * dt) # establish forcing term x = torch.linspace(0, 2 * np.pi, nx + 1, device=device) x = x[0:-1] X, Y = torch.meshgrid(x, x) f = -4 * torch.cos(4 * Y) residual = wt + (advection - (1.0 / re) * wlap + 0.1 * w[:, 1:-1]) - f residual_loss = (residual**2).mean() dw = torch.autograd.grad(residual_loss, w)[0] return dw