Source code for ran.phy.numpy.pusch.gen_dmrs_sym

# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
NumPy implementation of MATLAB-style PUSCH DMRS generation utilities.

This module mirrors the logic used in the MATLAB pipeline for building
frequency-domain DMRS sequences and their underlying Gold sequences.
It is designed to be compatible with the channel estimation code that
consumes these sequences (see `_apply_chest_ls_main.py`).

Key functions:
- gen_dmrs_sym: produce per-symbol, per-SCID DMRS resources
"""

import numpy as np

from ran.phy.numpy.utils import gold_sequence, qpsk_map
from ran.types import ComplexArrayNP, ComplexNP, IntArrayNP, IntNP
from ran.constants import N_SYM_PER_SLOT


[docs] def gen_dmrs_sym( slot_number: int, n_f: int, n_dmrs_id: int, sym_idx_dmrs: IntArrayNP | None = None, *, n_t: int = 14, ) -> tuple[ComplexArrayNP, IntArrayNP]: """Generate DMRS symbols and scrambling sequences. Parameters ---------- slot_number : int Integer slot number n_f : int Length of Gold sequence per port (must be even) n_dmrs_id : int DMRS identity (integer) sym_idx_dmrs : IntArrayNP | None, optional 0-based indices of DMRS symbols to generate. Alternatively, provide n_t (number of OFDM symbols) to generate indices [0, 1, ..., n_t-1]. Exactly one of sym_idx_dmrs or n_t must be provided. n_t : int, default=14 Number of OFDM symbols Returns ------- r_dmrs : ComplexArrayNP Complex array of shape (n_f//2, n_sym, 2), with 2 = number of SCIDs scr_seq : IntArrayNP Integer array of shape (n_f, n_sym, 2) """ if (n_f % 2) != 0: msg = "n_f must be even to form complex DMRS from Gold sequence" raise ValueError(msg) if sym_idx_dmrs is None: sym_idx_dmrs = np.arange(n_t, dtype=IntNP) t_idx_vec: IntArrayNP = sym_idx_dmrs.astype(IntNP) + 1 n_sym = t_idx_vec.size r_dmrs: ComplexArrayNP = np.empty((n_f // 2, n_sym, 2), dtype=ComplexNP) scr_seq: IntArrayNP = np.empty((n_f, n_sym, 2), dtype=IntNP) # n_scid_vec: 1D array containing the two possible scrambling identities (SCID) n_scid_vec = np.array([0, 1], dtype=IntNP) # Compute c_init for all (t_idx, n_scid) pairs: shape (n_t, 2) c_init_mat = ( (1 << 17) * (slot_number * N_SYM_PER_SLOT + t_idx_vec[:, None]) * (2 * n_dmrs_id + 1) + 2 * n_dmrs_id + n_scid_vec[None, :] ) % (1 << 31) # For each (t_idx, n_scid), generate Gold sequence and QPSK map for scid_idx in range(2): # [0, 1] for t_idx in range(n_sym): c_init = c_init_mat[t_idx, scid_idx] c = gold_sequence(c_init, n_f) scr_seq[:, t_idx, scid_idx] = c r_dmrs[:, t_idx, scid_idx] = qpsk_map(c, n_f // 2) return r_dmrs, scr_seq