NVIDIA CUDA Toolkit Release Notes
The Release Notes for the CUDA Toolkit.
1. CUDA 12.3 Update 1 Release Notes
The release notes for the NVIDIA® CUDA® Toolkit can be found online at https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html.
Note
The release notes have been reorganized into two major sections: the general CUDA release notes, and the CUDA libraries release notes including historical information for 12.x releases.
1.1. CUDA Toolkit Major Component Versions
- CUDA Components
Starting with CUDA 11, the various components in the toolkit are versioned independently.
For CUDA 12.3 Update 1, the table below indicates the versions:
Component Name |
Version Information |
Supported Architectures |
Supported Platforms |
|
---|---|---|---|---|
CUDA C++ Core Compute Libraries |
Thrust |
2.2.0 |
x86_64, arm64-sbsa, POWER |
Linux, Windows |
CUB |
2.2.0 |
|||
libcu++ |
2.2.0 |
|||
Cooperative Groups |
12.3.0 |
|||
CUDA Runtime (cudart) |
12.3.101 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
cuobjdump |
12.3.101 |
x86_64, arm64-sbsa, POWER |
Linux, Windows |
|
CUPTI |
12.3.101 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
CUDA cuxxfilt (demangler) |
12.3.101 |
x86_64, arm64-sbsa, POWER |
Linux, Windows |
|
CUDA Demo Suite |
12.3.101 |
x86_64 |
Linux, Windows |
|
CUDA GDB |
12.3.101 |
x86_64, arm64-sbsa, POWER |
Linux, WSL |
|
CUDA Nsight Eclipse Plugin |
12.3.101 |
x86_64, POWER |
Linux |
|
CUDA NVCC |
12.3.103 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
CUDA nvdisasm |
12.3.101 |
x86_64, arm64-sbsa, POWER |
Linux, Windows |
|
CUDA NVML Headers |
12.3.101 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
CUDA nvprof |
12.3.101 |
x86_64, POWER |
Linux, Windows |
|
CUDA nvprune |
12.3.101 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
CUDA NVRTC |
12.3.103 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
NVTX |
12.3.101 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
CUDA NVVP |
12.3.101 |
x86_64, POWER |
Linux, Windows |
|
CUDA OpenCL |
12.3.101 |
x86_64 |
Linux, Windows |
|
CUDA Profiler API |
12.3.101 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
CUDA Compute Sanitizer API |
12.3.101 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
CUDA cuBLAS |
12.3.4.1 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
CUDA cuFFT |
11.0.12.1 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
CUDA cuFile |
1.8.1.2 |
x86_64, arm64-sbsa |
Linux |
|
CUDA cuRAND |
10.3.4.101 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
CUDA cuSOLVER |
11.5.4.101 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
CUDA cuSPARSE |
12.2.0.103 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
CUDA NPP |
12.2.3.2 |
x86_64, Parm64-sbsa, OWER |
Linux, Windows, WSL |
|
CUDA nvJitLink |
12.3.101 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
CUDA nvJPEG |
12.3.0.81 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
Nsight Compute |
2023.3.1.1 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL (Windows 11) |
|
Nsight Systems |
2023.3.3.42 |
x86_64, arm64-sbsa, POWER |
Linux, Windows, WSL |
|
Nsight Visual Studio Edition (VSE) |
2023.3.1.23311 |
x86_64 (Windows) |
Windows |
|
nvidia_fs1 |
2.18.3 |
x86_64, arm64-sbsa |
Linux |
|
Visual Studio Integration |
12.3.101 |
x86_64 (Windows) |
Windows |
|
NVIDIA Linux Driver |
545.23.08 |
x86_64, arm64-sbsa, POWER |
Linux |
|
NVIDIA Windows Driver |
546.12 |
x86_64 (Windows) |
Windows, WSL |
- CUDA Driver
Running a CUDA application requires the system with at least one CUDA capable GPU and a driver that is compatible with the CUDA Toolkit. See Table 3. For more information various GPU products that are CUDA capable, visit https://developer.nvidia.com/cuda-gpus.
Each release of the CUDA Toolkit requires a minimum version of the CUDA driver. The CUDA driver is backward compatible, meaning that applications compiled against a particular version of the CUDA will continue to work on subsequent (later) driver releases.
More information on compatibility can be found at https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-compatibility-and-upgrades.
Note: Starting with CUDA 11.0, the toolkit components are individually versioned, and the toolkit itself is versioned as shown in the table below.
The minimum required driver version for CUDA minor version compatibility is shown below. CUDA minor version compatibility is described in detail in https://docs.nvidia.com/deploy/cuda-compatibility/index.html
CUDA Toolkit |
Minimum Required Driver Version for CUDA Minor Version Compatibility* |
|
---|---|---|
Linux x86_64 Driver Version |
Windows x86_64 Driver Version |
|
CUDA 12.3.x |
>=525.60.13 |
>=527.41 |
CUDA 12.2.x |
>=525.60.13 |
>=527.41 |
CUDA 12.1.x |
>=525.60.13 |
>=527.41 |
CUDA 12.0.x |
>=525.60.13 |
>=527.41 |
CUDA 11.8.x |
>=450.80.02 |
>=452.39 |
CUDA 11.7.x |
>=450.80.02 |
>=452.39 |
CUDA 11.6.x |
>=450.80.02 |
>=452.39 |
CUDA 11.5.x |
>=450.80.02 |
>=452.39 |
CUDA 11.4.x |
>=450.80.02 |
>=452.39 |
CUDA 11.3.x |
>=450.80.02 |
>=452.39 |
CUDA 11.2.x |
>=450.80.02 |
>=452.39 |
CUDA 11.1 (11.1.0) |
>=450.80.02 |
>=452.39 |
CUDA 11.0 (11.0.3) |
>=450.36.06** |
>=451.22** |
* Using a Minimum Required Version that is different from Toolkit Driver Version could be allowed in compatibility mode – please read the CUDA Compatibility Guide for details.
** CUDA 11.0 was released with an earlier driver version, but by upgrading to Tesla Recommended Drivers 450.80.02 (Linux) / 452.39 (Windows), minor version compatibility is possible across the CUDA 11.x family of toolkits.
The version of the development NVIDIA GPU Driver packaged in each CUDA Toolkit release is shown below.
CUDA Toolkit |
Toolkit Driver Version |
|
---|---|---|
Linux x86_64 Driver Version |
Windows x86_64 Driver Version |
|
CUDA 12.3 Update 1 |
>=545.23.08 |
>=546.12 |
CUDA 12.3 GA |
>=545.23.06 |
>=545.84 |
CUDA 12.2 Update 2 |
>=535.104.05 |
>=537.13 |
CUDA 12.2 Update 1 |
>=535.86.09 |
>=536.67 |
CUDA 12.2 GA |
>=535.54.03 |
>=536.25 |
CUDA 12.1 Update 1 |
>=530.30.02 |
>=531.14 |
CUDA 12.1 GA |
>=530.30.02 |
>=531.14 |
CUDA 12.0 Update 1 |
>=525.85.12 |
>=528.33 |
CUDA 12.0 GA |
>=525.60.13 |
>=527.41 |
CUDA 11.8 GA |
>=520.61.05 |
>=520.06 |
CUDA 11.7 Update 1 |
>=515.48.07 |
>=516.31 |
CUDA 11.7 GA |
>=515.43.04 |
>=516.01 |
CUDA 11.6 Update 2 |
>=510.47.03 |
>=511.65 |
CUDA 11.6 Update 1 |
>=510.47.03 |
>=511.65 |
CUDA 11.6 GA |
>=510.39.01 |
>=511.23 |
CUDA 11.5 Update 2 |
>=495.29.05 |
>=496.13 |
CUDA 11.5 Update 1 |
>=495.29.05 |
>=496.13 |
CUDA 11.5 GA |
>=495.29.05 |
>=496.04 |
CUDA 11.4 Update 4 |
>=470.82.01 |
>=472.50 |
CUDA 11.4 Update 3 |
>=470.82.01 |
>=472.50 |
CUDA 11.4 Update 2 |
>=470.57.02 |
>=471.41 |
CUDA 11.4 Update 1 |
>=470.57.02 |
>=471.41 |
CUDA 11.4.0 GA |
>=470.42.01 |
>=471.11 |
CUDA 11.3.1 Update 1 |
>=465.19.01 |
>=465.89 |
CUDA 11.3.0 GA |
>=465.19.01 |
>=465.89 |
CUDA 11.2.2 Update 2 |
>=460.32.03 |
>=461.33 |
CUDA 11.2.1 Update 1 |
>=460.32.03 |
>=461.09 |
CUDA 11.2.0 GA |
>=460.27.03 |
>=460.82 |
CUDA 11.1.1 Update 1 |
>=455.32 |
>=456.81 |
CUDA 11.1 GA |
>=455.23 |
>=456.38 |
CUDA 11.0.3 Update 1 |
>= 450.51.06 |
>= 451.82 |
CUDA 11.0.2 GA |
>= 450.51.05 |
>= 451.48 |
CUDA 11.0.1 RC |
>= 450.36.06 |
>= 451.22 |
CUDA 10.2.89 |
>= 440.33 |
>= 441.22 |
CUDA 10.1 (10.1.105 general release, and updates) |
>= 418.39 |
>= 418.96 |
CUDA 10.0.130 |
>= 410.48 |
>= 411.31 |
CUDA 9.2 (9.2.148 Update 1) |
>= 396.37 |
>= 398.26 |
CUDA 9.2 (9.2.88) |
>= 396.26 |
>= 397.44 |
CUDA 9.1 (9.1.85) |
>= 390.46 |
>= 391.29 |
CUDA 9.0 (9.0.76) |
>= 384.81 |
>= 385.54 |
CUDA 8.0 (8.0.61 GA2) |
>= 375.26 |
>= 376.51 |
CUDA 8.0 (8.0.44) |
>= 367.48 |
>= 369.30 |
CUDA 7.5 (7.5.16) |
>= 352.31 |
>= 353.66 |
CUDA 7.0 (7.0.28) |
>= 346.46 |
>= 347.62 |
For convenience, the NVIDIA driver is installed as part of the CUDA Toolkit installation. Note that this driver is for development purposes and is not recommended for use in production with Tesla GPUs.
For running CUDA applications in production with Tesla GPUs, it is recommended to download the latest driver for Tesla GPUs from the NVIDIA driver downloads site at https://www.nvidia.com/drivers.
During the installation of the CUDA Toolkit, the installation of the NVIDIA driver may be skipped on Windows (when using the interactive or silent installation) or on Linux (by using meta packages).
For more information on customizing the install process on Windows, see https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software.
For meta packages on Linux, see https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas.
1.2. New Features
This section lists new general CUDA and CUDA compilers features.
1.2.1. General CUDA
CUDA User Mode Driver, CUDA Runtime libraries and CUBLAS now come with obfuscated symbol names and with frame pointers enabled.
Frame Pointers are enabled for other libraries in the CUDA Toolkit: NVIDIA Management Library, CUDA Profiling Tools Interface, cuBLAS, Compiler libraries – NVRTC, PTXJIT compiler, nvJitLink, and libnvvm.
Allows better runtime visibility and traceability, and allows easier exchange of runtime information with NVIDIA when needed for debugging purposes.
See https://developer.nvidia.com/blog/cuda-toolkit-symbol-server/ for information on how to use obfuscated symbols.
Symbol server address is: https://cudatoolkit-symbols.nvidia.com/.
Lazy loading default enablement for Windows:
Brings the significant memory savings and load-time reductions of lazy loading to Windows by default. Additionally, makes the behavior equivalent between Linux and Windows.
Single-step CUDA uninstall for Windows:
It is no longer necessary to uninstall multiple components of the CUDA Toolkit individually to upgrade or uninstall CUDA. This can now be done in a single step.
CUDA Graphs:
Graph edge data, allowing modified dependencies between nodes. Programmatic Dependent Launch may now be described natively in CUDA Graphs.
Launch completion events:
Allows a dependency on scheduling, but not completion, of all blocks in a kernel, enabling tighter control of scheduling.
MPS:
Added a CUDA API to query whether or not MPS is running.
Added a driver API to return the name of a kernel function.
Added an API to libnvJitLink to return the nvJitLink version.
Added support for reading kernel parameters in device functions.
Enable querying the return type of __device__ lambdas with trailing return type. Fixes uncommon failures when using device-side lambdas.
NVML / nvidia-smi:
Metric for front-end context switch utilization (FECS)
Added metrics for Ada Lovelace AV1 codec utilization
Support GPU monitoring on Tegra
Added an NVML API to expose H100 PCIe counters and corresponding PCIe section in nvidia-smi
1.2.2. CUDA Compilers
For changes to PTX, refer to https://docs.nvidia.com/cuda/parallel-thread-execution/#ptx-isa-version-8-3.
Enhanced thread support when using the libNVVM API. Clients can take advantage of improved compilation speeds by spawning multiple compilation threads concurrently.
Improved compile time in some common scenarios:
Extended split compilation to cubin for LTO.
Turned on concurrent NVVM processing by default, with documented fallback to serialized compilation.
Reduced NVRTC compile time for small programs via moving CUDA C++ builtin function declarations into compiler.
Moved
cuda_fp16.h
andcuda_bf16.h
into compiler bitcode.
Added new keyword``__inline_hint__`` to specify device functions in a different
.cu
file to be inlined during LTO.Enabled querying return type of __device__ lambdas with trailing return type.
Provided information about unused bytes to compute-sanitizer for better diagnostics.
1.2.3. CUDA Developer Tools
For changes to nvprof and Visual Profiler, see the changelog.
For new features, improvements, and bug fixes in Nsight Systems, see the changelog.
For new features, improvements, and bug fixes in Nsight Visual Studio Edition, see the changelog.
For new features, improvements, and bug fixes in CUPTI, see the changelog.
For new features, improvements, and bug fixes in Nsight Compute, see the changelog.
For new features, improvements, and bug fixes in Compute Sanitizer, see the changelog.
For new features, improvements, and bug fixes in CUDA-GDB, see the changelog.
1.3. Resolved Issues
1.3.1. General CUDA
Resolved an NVML incompatibility issue present when upgrading to driver version 535 without upgrading CUDA from 12.1 to 12.2.
Improved driver error reporting in rare conditions when ECC errors impact GPU initialization.
1.4. Deprecated or Dropped Features
Features deprecated in the current release of the CUDA software still work in the current release, but their documentation may have been removed, and they will become officially unsupported in a future release. We recommend that developers employ alternative solutions to these features in their software.
General CUDA
Starting in CUDA 12.4, the NVIDIA driver installation on Linux will be opt-in. The goal is to improve user experience for a wide range of use cases such as installing the open module flavor driver. The
cuda-runtime
dependency and therefore thecuda-drivers
(NVIDIA driver) dependency will be removed from the top-levelcuda
meta-package. Effectively, thecuda
andcuda-toolkit
meta-packages will be equivalent in CUDA 12.4.
CUDA Tools
Support for the macOS host client of CUDA-GDB is deprecated. It will be dropped in an upcoming release.
1.5. Known Issues
1.5.1. General CUDA Known Issues
CUDA kernels that use the sparsity feature of tensor cores through the
mma.sp
PTX instruction on NVIDIA Hopper architecture GPUs may intermittently experience silent data corruption resulting in incorrect results. NVIDIA libraries currently do not provide access to tensor cores with sparsity so only kernels directly developed using themma.sp
PTX instruction are impacted. This issue will be fixed in an upcoming release.The Early Access (EA) of Hopper Confidential Computing is not enabled on 12.3 or its associated driver (545.xx). Please see https://docs.nvidia.com/confidential-computing/ for details.
The aarch64-jetson architecture for Jetson devices is not supported in the CUDA 12.3 release.
2. CUDA Libraries
This section covers CUDA Libraries release notes for 12.x releases.
CUDA Math Libraries toolchain uses C++11 features, and a C++11-compatible standard library (libstdc++ >= 20150422) is required on the host.
Support for the following compute capabilities is removed for all libraries:
sm_35 (Kepler)
sm_37 (Kepler)
2.1. cuBLAS Library
2.1.1. cuBLAS: Release 12.3 Update 1
New Features
Improved performance of heuristics cache for workloads that have a high eviction rate.
Known Issues
BLAS level 2 and 3 functions might not treat alpha in a BLAS compliant manner when alpha is zero and the pointer mode is set to
CUBLAS_POINTER_MODE_DEVICE
. The expected behavior is that the corresponding computations would be skipped. You may encounter the following issues: (1) HER{,2,X,K,2K} may zero the imaginary part on the diagonal elements of the output matrix; and (2) HER{,2,X,K,2K}, SYR{,2,X,K,2K} and others may produce NaN resulting from performing computation on matrices A and B which would otherwise be skipped. If strict compliance with BLAS is required, the user may manually check for alpha value before invoking the functions or switch toCUBLAS_POINTER_MODE_HOST
.
Resolved Issues
cuBLASLt matmul operations might have computed the output incorrectly under the following conditions: the data type of matrices A and B is FP8, the data type of matrices C and D is FP32, FP16, or BF16, the beta value is 1.0, the C and D matrices are the same, the epilogue contains GELU activation function.
When an application compiled with cuBLASLt from CUDA Toolkit 12.2 update 1 or earlier runs with cuBLASLt from CUDA Toolkit 12.2 update 2 or CUDA Toolkit 12.3, matrix multiply descriptors initialized using
cublasLtMatmulDescInit()
sometimes did not respect attribute changes usingcublasLtMatmulDescSetAttribute()
.Fixed creation of cuBLAS or cuBLASLt handles on Hopper GPUs under the Multi-Process Service (MPS).
cublasLtMatmul
with K equals 1 and epilogueCUBLASLT_EPILOGUE_BGRAD{A,B}
might have returned incorrect results for the bias gradient.
2.1.2. cuBLAS: Release 12.3
New Features
Improved performance on NVIDIA L40S Ada GPUs.
Known Issues
cuBLASLt matmul operations may compute the output incorrectly under the following conditions: the data type of matrices A and B is FP8, the data type of matrices C and D is FP32, FP16, or BF16, the beta value is 1.0, the C and D matrices are the same, the epilogue contains GELU activation function.
When an application compiled with cuBLASLt from CUDA Toolkit 12.2 update 1 or earlier runs with cuBLASLt from CUDA Toolkit 12.2 update 2 or later, matrix multiply descriptors initialized using
cublasLtMatmulDescInit()
may not respect attribute changes usingcublasLtMatmulDescSetAttribute()
. To workaround this issue, create the matrix multiply descriptor usingcublasLtMatmulDescCreate()
instead ofcublasLtMatmulDescInit()
. This will be fixed in an upcoming release.
2.1.3. cuBLAS: Release 12.2 Update 2
New Features
cuBLASLt will now attempt to decompose problems that cannot be run by a single gemm kernel. It does this by partitioning the problem into smaller chunks and executing the gemm kernel multiple times. This improves functional coverage for very large m, n, or batch size cases and makes the transition from the cuBLAS API to the cuBLASLt API more reliable.
Known Issues
cuBLASLt matmul operations may compute the output incorrectly under the following conditions: the data type of matrices A and B is FP8, the data type of matrices C and D is FP32, FP16, or BF16, the beta value is 1.0, the C and D matrices are the same, the epilogue contains GELU activation function.
2.1.4. cuBLAS: Release 12.2
Known Issues
cuBLAS initialization fails on Hopper architecture GPUs when MPS is in use with
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE
set to a value less than 100%. There is currently no workaround for this issue.Some Hopper kernels produce incorrect results for batched matmuls with
CUBLASLT_EPILOGUE_RELU_BIAS
orCUBLASLT_EPILOGUE_GELU_BIAS
and a non-zeroCUBLASLT_MATMUL_DESC_BIAS_BATCH_STRIDE
. The kernels apply the first batch’s bias vector to all batches. This will be fixed in a future release.
2.1.5. cuBLAS: Release 12.1 Update 1
New Features
Support for FP8 on NVIDIA Ada GPUs.
Improved performance on NVIDIA L4 Ada GPUs.
Introduced an API that instructs the cuBLASLt library to not use some CPU instructions. This is useful in some rare cases where certain CPU instructions used by cuBLASLt heuristics negatively impact CPU performance. Refer to https://docs.nvidia.com/cuda/cublas/index.html#disabling-cpu-instructions.
Known Issues
When creating a matrix layout using the
cublasLtMatrixLayoutCreate()
function, the object pointed at bycublasLtMatrixLayout_t
is smaller thancublasLtMatrixLayoutOpaque_t
(but enough to hold the internal structure). As a result, the object should not be dereferenced or copied explicitly, as this might lead to out of bound accesses. If one needs to serialize the layout or copy it, it is recommended to manually allocate an object of sizesizeof(cublasLtMatrixLayoutOpaque_t)
bytes, and initialize it usingcublasLtMatrixLayoutInit()
function. The same applies tocublasLtMatmulDesc_t
andcublasLtMatrixTransformDesc_t
. The issue will be fixed in future releases by ensuring thatcublasLtMatrixLayoutCreate()
allocates at leastsizeof(cublasLtMatrixLayoutOpaque_t)
bytes.
2.1.6. cuBLAS: Release 12.0 Update 1
New Features
Improved performance on NVIDIA H100 SXM and NVIDIA H100 PCIe GPUs.
Known Issues
For optimal performance on NVIDIA Hopper architecture, cuBLAS needs to allocate a bigger internal workspace (64 MiB) than on the previous architectures (8 MiB). In the current and previous releases, cuBLAS allocates 256 MiB. This will be addressed in a future release. A possible workaround is to set the
CUBLAS_WORKSPACE_CONFIG
environment variable to :32768:2 when running cuBLAS on NVIDIA Hopper architecture.
Resolved Issues
Reduced cuBLAS host-side overheads caused by not using the cublasLt heuristics cache. This began in the CUDA Toolkit 12.0 release.
Added forward compatible single precision complex GEMM that does not require workspace.
2.1.7. cuBLAS: Release 12.0
New Features
cublasLtMatmul
now supports FP8 with a non-zero beta.Added
int64
APIs to enable larger problem sizes; refer to 64-bit integer interface.Added more Hopper-specific kernels for
cublasLtMatmul
with epilogues:CUBLASLT_EPILOGUE_BGRAD{A,B}
CUBLASLT_EPILOGUE_{RELU,GELU}_AUX
CUBLASLT_EPILOGUE_D{RELU,GELU}
Improved Hopper performance on arm64-sbsa by adding Hopper kernels that were previously supported only on the x86_64 architecture for Windows and Linux.
Known Issues
There are no forward compatible kernels for single precision complex gemms that do not require workspace. Support will be added in a later release.
Resolved Issues
Fixed an issue on NVIDIA Ampere architecture and newer GPUs where
cublasLtMatmul
with epilogueCUBLASLT_EPILOGUE_BGRAD{A,B}
and a nontrivial reduction scheme (that is, notCUBLASLT_REDUCTION_SCHEME_NONE
) could return incorrect results for the bias gradient.cublasLtMatmul
for gemv-like cases (that is, m or n equals 1) might ignore bias with theCUBLASLT_EPILOGUE_RELU_BIAS
andCUBLASLT_EPILOGUE_BIAS
epilogues.
Deprecations
Disallow including
cublas.h
andcublas_v2.h
in the same translation unit.Removed:
CUBLAS_MATMUL_STAGES_16x80
andCUBLAS_MATMUL_STAGES_64x80
fromcublasLtMatmulStages_t
. No kernels utilize these stages anymore.cublasLt3mMode_t
,CUBLASLT_MATMUL_PREF_MATH_MODE_MASK
, andCUBLASLT_MATMUL_PREF_GAUSSIAN_MODE_MASK
fromcublasLtMatmulPreferenceAttributes_t
. Instead, use the corresponding flags fromcublasLtNumericalImplFlags_t
.CUBLASLT_MATMUL_PREF_POINTER_MODE_MASK
,CUBLASLT_MATMUL_PREF_EPILOGUE_MASK
, andCUBLASLT_MATMUL_PREF_SM_COUNT_TARGET
fromcublasLtMatmulPreferenceAttributes_t
. The corresponding parameters are taken directly fromcublasLtMatmulDesc_t
.CUBLASLT_POINTER_MODE_MASK_NO_FILTERING
fromcublasLtPointerModeMask_t
. This mask was only applicable toCUBLASLT_MATMUL_PREF_MATH_MODE_MASK
which was removed.
2.2. cuFFT Library
2.2.1. cuFFT: Release 12.3 Update 1
Known Issues
Executing a real-to-complex (R2C) or complex-to-real (C2R) plan in a context different to the one used to create the plan could cause undefined behavior. This issue will be fixed in an upcoming release of cuFFT.
Resolved Issues
Complex-to-complex (C2C) execution functions (
cufftExec
and similar) now properly error-out in case of error during kernel launch, for example due to a missing CUDA context.
2.2.2. cuFFT: Release 12.3
New Features
Callback kernels are more relaxed in terms of resource usage, and will use fewer registers.
Improved accuracy for double precision prime and composite FFT sizes with factors larger than 127.
Slightly improved planning times for some FFT sizes.
2.2.3. cuFFT: Release 12.2
New Features
cufftSetStream
can be used in multi-GPU plans with a stream from any GPU context, instead of from the primary context of the first GPU listed incufftXtSetGPUs
.Improved performance of 1000+ of FFTs of sizes ranging from 62 to 16380. The improved performance spans hundreds of single precision and double precision cases for FFTs with contiguous data layout, across multiple GPU architectures (from Maxwell to Hopper GPUs) via PTX JIT.
Reduced the size of the static libraries when compared to cuFFT in the 12.1 release.
Resolved Issues
cuFFT no longer exhibits a race condition when threads simultaneously create and access plans with more than 1023 plans alive.
cuFFT no longer exhibits a race condition when multiple threads call
cufftXtSetGPUs
concurrently.
2.2.4. cuFFT: Release 12.1 Update 1
Known Issues
cuFFT exhibits a race condition when one thread calls
cufftCreate
(orcufftDestroy
) and another thread calls any API (exceptcufftCreate
orcufftDestroy
), and when the total number of plans alive exceeds 1023.cuFFT exhibits a race condition when multiple threads call
cufftXtSetGPUs
concurrently on different plans.
2.2.5. cuFFT: Release 12.1
New Features
Improved performance on Hopper GPUs for hundreds of FFTs of sizes ranging from 14 to 28800. The improved performance spans over 542 cases across single and double precision for FFTs with contiguous data layout.
Known Issues
Starting from CUDA 11.8, CUDA Graphs are no longer supported for callback routines that load data in out-of-place mode transforms. An upcoming release will update the cuFFT callback implementation, removing this limitation. cuFFT deprecated callback functionality based on separate compiled device code in cuFFT 11.4.
Resolved Issues
cuFFT no longer produces errors with compute-sanitizer at program exit if the CUDA context used at plan creation was destroyed prior to program exit.
2.2.6. cuFFT: Release 12.0 Update 1
Resolved Issues
Scratch space requirements for multi-GPU, single-batch, 1D FFTs were reduced.
2.2.7. cuFFT: Release 12.0
New Features
PTX JIT kernel compilation allowed the addition of many new accelerated cases for Maxwell, Pascal, Volta and Turing architectures.
Known Issues
cuFFT plan generation time increases due to PTX JIT compiling. Refer to Plan Initialization TIme.
Resolved Issues
cuFFT plans had an unintentional small memory overhead (of a few kB) per plan. This is resolved.
2.3. cuSOLVER Library
2.3.1. cuSOLVER: Release 12.2 Update 2
Resolved Issues
Fixed an issue with
cusolverDn<t>gesvd()
,cusolverDnGesvd()
, andcusolverDnXgesvd()
, which could cause wrong results for matrices larger than 18918 ifjobu
orjobvt
was unequal to ‘N
’.
2.3.2. cuSOLVER: Release 12.2
New Features
A new API to ensure deterministic results or allow non-deterministic results for improved performance. See
cusolverDnSetDeterministicMode()
andcusolverDnGetDeterministicMode()
. Affected functions are:cusolverDn<t>geqrf()
,cusolverDn<t>syevd()
,cusolverDn<t>syevdx()
,cusolverDn<t>gesvdj()
,cusolverDnXgeqrf()
,cusolverDnXsyevd()
,cusolverDnXsyevdx()
,cusolverDnXgesvdr()
, andcusolverDnXgesvdp()
.
Known Issues
Concurrent executions of
cusolverDn<t>getrf()
orcusolverDnXgetrf()
in different non-blocking CUDA streams on the same device might result in a deadlock.
2.4. cuSPARSE Library
2.4.1. cuSPARSE: Release 12.3 Update 1
New Features
Added support for block sizes of 64 and 128 in BSR SDDMM.
Added a preprocessing step for BSR SDDMM that helps improve performance of the main computing stage.
2.4.2. cuSPARSE: Release 12.3
New Features
The
cusparseSpSV_bufferSize()
andcusparseSpSV_analysis()
routines now accept NULL pointers for the dense vector.The
cusparseSpSM_bufferSize()
andcusparseSpSM_analysis()
routines now accept dense matrix descriptors with NULL pointer for values.
Known Issues
The
cusparseSpSV_analysis()
andcusparseSpSM_analysis()
routines are blocking calls/not asynchronous.Wrong results can occur for
cusparseSpSV()
using sliced ELLPACK format and transpose/transpose conjugate operation on matrix A.
Resolved Issues
cusparseSpMV()
now supports output vector with the minimum alignment.cusparseSpSV()
provided indeterministic results in some cases.Fixed an issue that caused
cusparseSpSV_analysis()
to hang sometimes in a multi-thread environment.Fixed an issue with
cusparseSpSV()
andcusparseSpSV()
that somtimes yielded wrong output when the output vector/matrix or input matrix contained NaN.
2.4.3. cuSPARSE: Release 12.2 Update 1
New Features
The library now provides the opportunity to dump sparse matrices to files during the creation of the descriptor for debugging purposes. See logging API https://docs.nvidia.com/cuda/cusparse/index.html#cusparse-logging-api.
Resolved Issues
Removed
CUSPARSE_SPMM_CSR_ALG3
fallback to avoid confusion in the algorithm selection process.Clarified the supported operations for
cusparseSDDMM()
.cusparseCreateConstSlicedEll()
now usesconst
pointers.Fixed wrong results in rare edge cases of
cusparseCsr2CscEx2()
with base 1 indexing.cusparseSpSM_bufferSize()
could ask slightly less memory than needed.cusparseSpMV()
now checks the validity of the buffer pointer only when it is strictly needed.
Deprecations
Several legacy APIs have been officially deprecated. A compile-time warning has been added to all of them.
2.4.4. cuSPARSE: Release 12.1 Update 1
New Features
Introduced Block Sparse Row (BSR) sparse matrix storage for the Generic APIs with support for SDDMM routine (
cusparseSDDMM
).Introduced Sliced Ellpack (SELL) sparse matrix storage format for the Generic APIs with support for sparse matrix-vector multiplication (
cusparseSpMV
) and triangular solver with a single right-hand side (cusparseSpSV
).Added a new API call (
cusparseSpSV_updateMatrix
) to update matrix values and/or the matrix diagonal in the sparse triangular solver with a single right-hand side after the analysis step.
2.4.5. cuSPARSE: Release 12.0 Update 1
New Features
cusparseSDDMM()
now supports mixed precision computation.Improved
cusparseSpMM()
alg2 mixed-precision performance on some matrices on NVIDIA Ampere architecture GPUs.Improved
cusparseSpMV()
performance with a new load balancing algorithm.cusparseSpSV()
andcusparseSpSM()
now support in-place computation, namely the output and input vectors/matrices have the same memory address.
Resolved Issues
cusparseSpSM()
could produce wrong results if the leading dimension (ld) of the RHS matrix is greater than the number of columns/rows.
2.4.6. cuSPARSE: Release 12.0
New Features
JIT LTO functionalities (
cusparseSpMMOp()
) switched from driver to nvJitLto library. Starting from CUDA 12.0 the user needs to link tolibnvJitLto.so
, see cuSPARSE documentation. JIT LTO performance has also been improved forcusparseSpMMOpPlan()
.Introduced const descriptors for the Generic APIs, for example,
cusparseConstSpVecGet()
. Now the Generic APIs interface clearly declares when a descriptor and its data are modified by the cuSPARSE functions.Added two new algorithms to
cusparseSpGEMM()
with lower memory utilization. The first algorithm computes a strict bound on the number of intermediate product, while the second one allows partitioning the computation in chunks.Added
int8_t
support tocusparseGather()
,cusparseScatter()
, andcusparseCsr2cscEx2()
.Improved
cusparseSpSV()
performance for both the analysis and the solving phases.Improved
cusparseSpSM()
performance for both the analysis and the solving phases.Improved
cusparseSDDMM()
performance and added support for batch computation.Improved
cusparseCsr2cscEx2()
performance.
Resolved Issues
cusparseSpSV()
andcusparseSpSM()
could produce wrong results.cusparseDnMatGetStridedBatch()
did not acceptbatchStride == 0
.
Deprecations
Removed deprecated CUDA 11.x APIs, enumerators, and descriptors.
2.5. Math Library
2.5.1. CUDA Math: Release 12.3
New Features
Performance of SIMD Integer CUDA Math APIs was improved.
Resolved Issues
The
__hisinf()
Math APIs fromcuda_fp16.h
andcuda_bf16.h
headers were silently producing wrong results if compiled with the-std=c++20
compiler option because of an underlying nvcc compiler issue, resolved in version 12.3.
Known Issues
Users of
cuda_fp16.h
andcuda_bf16.h
headers are advised to disable host compilers strict aliasing rules based optimizations (e.g. pass-fno-strict-aliasing
to host GCC compiler) as these may interfere with the type-punning idioms used in the__half
,__half2
,__nv_bfloat16
,__nv_bfloat162
types implementations and expose the user program to undefined behavior. Note, the headers suppress GCC diagnostics through: #pragma GCC diagnostic ignored-Wstrict-aliasing
. This behavior may improve in future versions of the headers.
2.5.2. CUDA Math: Release 12.2
New Features
CUDA Math APIs for
__half
and__nv_bfloat16
types received usability improvements, including host side <emulated> support for many of the arithmetic operations and conversions.__half
and__nv_bfloat16
types have implicit conversions to/from integral types, which are now available with host compilers by default. These may cause build issues due to ambiguous overloads resolution. Users are advised to update their code to select proper overloads. To opt-out user may want to define the following macros (these macros will be removed in the future CUDA release):__CUDA_FP16_DISABLE_IMPLICIT_INTEGER_CONVERTS_FOR_HOST_COMPILERS__
__CUDA_BF16_DISABLE_IMPLICIT_INTEGER_CONVERTS_FOR_HOST_COMPILERS__
Resolved Issues
During ongoing testing, NVIDIA identified that due to an algorithm error the results of 64-bit floating-point division in default round-to-nearest-even mode could produce spurious overflow to infinity. NVIDIA recommends that all developers requiring strict IEEE754 compliance update to CUDA Toolkit 12.2 or newer. The affected algorithm was present in both offline compilation as well as just-in-time (JIT) compilation. As JIT compilation is handled by the driver, NVIDIA recommends updating to driver version greater than or equal to R535 (R536 on Windows) when IEEE754 compliance is required and when using JIT. This is a software algorithm fix and is not tied to specific hardware.
Updated the observed worst case error bounds for single precision intrinsic functions
__expf()
,__exp10f()
and double precision functionsasinh()
,acosh()
.
2.5.3. CUDA Math: Release 12.1
New Features
Performance and accuracy improvements in
atanf
,acosf
,asinf
,sinpif
,cospif
,powf
,erff
, andtgammaf
.
2.5.4. CUDA Math: Release 12.0
New Features
Introduced new integer/fp16/bf16 CUDA Math APIs to help expose performance benefits of new DPX instructions. Refer to https://docs.nvidia.com/cuda/cuda-math-api/index.html.
Known Issues
Double precision inputs that cause the double precision division algorithm in the default ‘round to nearest even mode’ produce spurious overflow: an infinite result is delivered where
DBL_MAX 0x7FEF_FFFF_FFFF_FFFF
is expected. Affected CUDA Math APIs:__ddiv_rn()
. Affected CUDA language operation: double precision / operation in the device code.
Deprecations
All previously deprecated undocumented APIs are removed from CUDA 12.0.
2.6. NVIDIA Performance Primitives (NPP)
2.6.1. NPP: Release 12.0
Deprecations
Deprecating non-CTX API support from next release.
Resolved Issues
A performance issue with the NPP
ResizeSqrPixel
API is now fixed and shows improved performance.
2.7. nvJPEG Library
2.7.1. nvJPEG: Release 12.3 Update 1
New Features
New APIs:
nvjpegBufferPinnedResize
andnvjpegBufferDeviceResize
which can be used to resize pinned and device buffers before using them.
2.7.2. nvJPEG: Release 12.2
New Features
Added support for JPEG Lossless decode (process 14, FO prediction).
nvJPEG is now supported on L4T.
2.7.3. nvJPEG: Release 12.0
New Features
Immproved the GPU Memory optimisation for the nvJPEG codec.
Resolved Issues
An issue that causes runtime failures when
nvJPEGDecMultipleInstances
was tested with a large number of threads is resolved.An issue with CMYK four component color conversion is now resolved.
Known Issues
Backend
NVJPEG_BACKEND_GPU_HYBRID
- Unable to handle bistreams with extra scans lengths.
Deprecations
The reuse of Huffman table in Encoder (
nvjpegEncoderParamsCopyHuffmanTables
).
- 1
Only available on select Linux distros
3. Notices
3.1. Notice
This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.
NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.
NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.
NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.
No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.
Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.
THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.
3.2. OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.
3.3. Trademarks
NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.