SO3#
- class cuequivariance.SO3(l: int)#
Subclass of
Irrep
, real irreducible representations of the 3D rotation group \(SO(3)\).Each representation is labeled by a non-negative integer \(l\).
Examples
>>> SO3(0) 0 >>> SO3(1) 1 >>> SO3(1).dim 3 >>> SO3.from_string("2") 2
- classmethod regexp_pattern() Pattern #
Regular expression pattern for parsing the string representation.
- classmethod clebsch_gordan( ) ndarray #
Clebsch-Gordan coefficients tensor.
The shape is
(number_of_paths, rep1.dim, rep2.dim, rep3.dim)
and rep3 is the output irrep.See also
- property dim: int#
Dimension of the representation
- Returns:
The dimension of the representation.
- Return type:
- classmethod iterator() Iterator[SO3] #
Iterator over all irreps of the Lie group.
the first element is the trivial irrep
the elements respect the partial order defined by
__lt__
- continuous_generators() ndarray #
Generators of the representation
The generators of the representation are defined by the following equation:
\[\rho(\alpha) = \exp\left(\alpha_i X_i\right)\]Where \(\rho(\alpha)\) is the representation of the group element corresponding to the parameter \(\alpha\) and \(X_i\) are the (continuous) generators of the representation, each of shape
(dim, dim)
.- Returns:
An array of shape
(lie_dim, dim, dim)
.- Return type:
np.ndarray
- discrete_generators() ndarray #
Discrete generators of the representation
\[\rho(n) = H^n\]- Returns:
An array of shape
(len(H), dim, dim)
.- Return type:
np.ndarray