fully_connected_tensor_product#
- cuequivariance.group_theory.descriptors.fully_connected_tensor_product( ) EquivariantPolynomial #
subscripts:
weights[uvw],lhs[iu],rhs[jv],output[kw]
Construct a fully connected tensor product descriptor.
The descriptor is constructed by iterating over all possible combinations of irreducible representations of the inputs and output irreps and constructing a path for each combination.
- Parameters:
- Returns:
Descriptor of the fully connected tensor product.
- Return type:
Examples
>>> cue.descriptors.fully_connected_tensor_product( ... 16 * cue.Irreps("SO3", "0 + 1 + 2"), ... 16 * cue.Irreps("SO3", "0 + 1 + 2"), ... 16 * cue.Irreps("SO3", "0 + 1 + 2"), ... ) ╭ a=61440x0 b=16x0+16x1+16x2 c=16x0+16x1+16x2 -> D=16x0+16x1+16x2 ╰─ [ijk]·a[uvw]·b[iu]·c[jv]➜D[kw] ─ num_paths=15 i={1, 3, 5} j={1, 3, 5} k={1, 3, 5} u=16 v=16 w=16
Where
61440x0
are the 61440 weights needed to mix all the inputs with all the outputs.