# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
import modulus
from torch import Tensor
from dataclasses import dataclass
from typing import Union, List
from modulus.models.meta import ModelMetaData
from modulus.models.module import Module
from modulus.models.rnn.layers import (
_ConvLayer,
_TransposeConvLayer,
_ConvGRULayer,
_ConvResidualBlock,
)
[docs]class One2ManyRNN(Module):
"""A RNN model with encoder/decoder for 2d/3d problems that provides predictions
based on single initial condition.
Parameters
----------
input_channels : int
Number of channels in the input
dimension : int, optional
Spatial dimension of the input. Only 2d and 3d are supported, by default 2
nr_latent_channels : int, optional
Channels for encoding/decoding, by default 512
nr_residual_blocks : int, optional
Number of residual blocks, by default 2
activation_fn : Union[nn.Module, List[nn.Module]], optional
Activation function to use, by default nn.ReLU()
nr_downsamples : int, optional
Number of downsamples, by default 2
nr_tsteps : int, optional
Time steps to predict, by default 32
Example
-------
>>> model = modulus.models.rnn.One2ManyRNN(
... input_channels=6,
... dimension=2,
... nr_latent_channels=32,
... activation_fn=torch.nn.ReLU(),
... nr_downsamples=2,
... nr_tsteps=16,
... )
>>> input = invar = torch.randn(4, 6, 1, 16, 16) # [N, C, T, H, W]
>>> output = model(input)
>>> output.size()
torch.Size([4, 6, 16, 16, 16])
"""
def __init__(
self,
input_channels: int,
dimension: int = 2,
nr_latent_channels: int = 512,
nr_residual_blocks: int = 2,
activation_fn: Union[nn.Module, List[nn.Module]] = nn.ReLU(),
nr_downsamples: int = 2,
nr_tsteps: int = 32,
) -> None:
super().__init__(meta=MetaData())
self.nr_tsteps = nr_tsteps
self.nr_residual_blocks = nr_residual_blocks
self.nr_downsamples = nr_downsamples
self.encoder_layers = nn.ModuleList()
channels_out = nr_latent_channels
# check valid dimensions
if dimension not in [2, 3]:
raise ValueError("Only 2D and 3D spatial dimensions are supported")
for i in range(nr_downsamples):
for j in range(nr_residual_blocks):
stride = 1
if i == 0 and j == 0:
channels_in = input_channels
else:
channels_in = channels_out
if (j == nr_residual_blocks - 1) and (i < nr_downsamples - 1):
channels_out = channels_out * 2
stride = 2
self.encoder_layers.append(
_ConvResidualBlock(
in_channels=channels_in,
out_channels=channels_out,
stride=stride,
dimension=dimension,
gated=True,
layer_normalization=False,
begin_activation_fn=not ((i == 0) and (j == 0)),
activation_fn=activation_fn,
)
)
self.rnn_layer = _ConvGRULayer(
in_features=channels_out, hidden_size=channels_out, dimension=dimension
)
self.conv_layers = nn.ModuleList()
self.decoder_layers = nn.ModuleList()
for i in range(nr_downsamples):
self.upsampling_layers = nn.ModuleList()
channels_in = channels_out
channels_out = channels_out // 2
self.upsampling_layers.append(
_TransposeConvLayer(
in_channels=channels_in,
out_channels=channels_out,
kernel_size=4,
stride=2,
dimension=dimension,
)
)
for j in range(nr_residual_blocks):
self.upsampling_layers.append(
_ConvResidualBlock(
in_channels=channels_out,
out_channels=channels_out,
stride=1,
dimension=dimension,
gated=True,
layer_normalization=False,
begin_activation_fn=not ((i == 0) and (j == 0)),
activation_fn=activation_fn,
)
)
self.conv_layers.append(
_ConvLayer(
in_channels=channels_in,
out_channels=nr_latent_channels,
kernel_size=1,
stride=1,
dimension=dimension,
)
)
self.decoder_layers.append(self.upsampling_layers)
if dimension == 2:
self.final_conv = nn.Conv2d(
nr_latent_channels, input_channels, (1, 1), (1, 1), padding="valid"
)
else:
# dimension is 3
self.final_conv = nn.Conv3d(
nr_latent_channels,
input_channels,
(1, 1, 1),
(1, 1, 1),
padding="valid",
)
[docs] def forward(self, x: Tensor) -> Tensor:
"""Forward pass
Parameters
----------
x : Tensor
Expects a tensor of size [N, C, 1, H, W] for 2D or [N, C, 1, D, H, W] for 3D
Where, N is the batch size, C is the number of channels, 1 is the number of
input timesteps and D, H, W are spatial dimensions.
Returns
-------
Tensor
Size [N, C, T, H, W] for 2D or [N, C, T, D, H, W] for 3D.
Where, T is the number of timesteps being predicted.
"""
# Encoding step
encoded_inputs = []
for t in range(1):
x_in = x[:, :, t, ...]
for layer in self.encoder_layers:
x_in = layer(x_in)
encoded_inputs.append(x_in)
# RNN step
rnn_output = []
for t in range(self.nr_tsteps):
if t == 0:
h = torch.zeros(list(x_in.size())).to(x.device)
x_in_rnn = encoded_inputs[0]
h = self.rnn_layer(x_in_rnn, h)
x_in_rnn = h
rnn_output.append(h)
decoded_output = []
for t in range(self.nr_tsteps):
x_out = rnn_output[t]
# Decoding step
latent_context_grid = []
for (conv_layer, decoder) in zip(self.conv_layers, self.decoder_layers):
latent_context_grid.append(conv_layer(x_out))
upsampling_layers = decoder
for upsampling_layer in upsampling_layers:
x_out = upsampling_layer(x_out)
# Add a convolution here to make the channel dimensions same as output
# Only last latent context grid is used, but mult-resolution is available
out = self.final_conv(latent_context_grid[-1])
decoded_output.append(out)
decoded_output = torch.stack(decoded_output, dim=2)
return decoded_output