NVIDIA PhysicsNeMo Core (Latest Release)

deeplearning/physicsnemo/physicsnemo-core/_modules/physicsnemo/launch/utils/checkpoint.html

Source code for physicsnemo.launch.utils.checkpoint

# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
from pathlib import Path, PurePath
from typing import Any, Dict, List, NewType, Optional, Union

import fsspec
import fsspec.utils
import torch
from torch.cuda.amp import GradScaler
from torch.optim.lr_scheduler import _LRScheduler

import physicsnemo
from physicsnemo.distributed import DistributedManager
from physicsnemo.launch.logging import PythonLogger
from physicsnemo.utils.capture import _StaticCapture
from physicsnemo.utils.filesystem import LOCAL_CACHE, _download_cached

optimizer = NewType("optimizer", torch.optim)
scheduler = NewType("scheduler", _LRScheduler)
scaler = NewType("scaler", GradScaler)

checkpoint_logging = PythonLogger("checkpoint")


def _get_checkpoint_filename(
    path: str,
    base_name: str = "checkpoint",
    index: Union[int, None] = None,
    saving: bool = False,
    model_type: str = "mdlus",
) -> str:
    """Gets the file name /path of checkpoint

    This function has three different ways of providing a checkout filename:
    - If supplied an index this will return the checkpoint name using that index.
    - If index is None and saving is false, this will get the checkpoint with the
    largest index (latest save).
    - If index is None and saving is true, it will return the next valid index file name
    which is calculated by indexing the largest checkpoint index found by one.

    Parameters
    ----------
    path : str
        Path to checkpoints
    base_name: str, optional
        Base file name, by default checkpoint
    index : Union[int, None], optional
        Checkpoint index, by default None
    saving : bool, optional
        Get filename for saving a new checkpoint, by default False
    model_type : str
        Model type, by default "mdlus" for PhysicsNeMo models and "pt" for PyTorch models


    Returns
    -------
    str
        Checkpoint file name
    """
    # Get model parallel rank so all processes in the first model parallel group
    # can save their checkpoint. In the case without model parallelism,
    # model_parallel_rank should be the same as the process rank itself and
    # only rank 0 saves
    if not DistributedManager.is_initialized():
        checkpoint_logging.warning(
            "`DistributedManager` not initialized already. Initializing now, but this might lead to unexpected errors"
        )
        DistributedManager.initialize()
    manager = DistributedManager()
    model_parallel_rank = (
        manager.group_rank("model_parallel")
        if "model_parallel" in manager.group_names
        else 0
    )

    # Determine input file name. Get absolute file path if Posix path.
    # pathlib does not support custom schemes (eg: msc://...) so only perform resolve() for Posix.
    protocol = fsspec.utils.get_protocol(path)
    fs = fsspec.filesystem(protocol)
    if protocol == "file":
        path = str(Path(path).resolve())
    checkpoint_filename = f"{path}/{base_name}.{model_parallel_rank}"

    # File extension for PhysicsNeMo models or PyTorch models
    file_extension = ".mdlus" if model_type == "mdlus" else ".pt"

    # If epoch is provided load that file
    if index is not None:
        checkpoint_filename = checkpoint_filename + f".{index}"
        checkpoint_filename += file_extension
    # Otherwise try loading the latest epoch or rolling checkpoint
    else:
        file_names = [
            fname for fname in fs.glob(checkpoint_filename + "*" + file_extension)
        ]

        if len(file_names) > 0:
            # If checkpoint from a null index save exists load that
            # This is the most likely line to error since it will fail with
            # invalid checkpoint names

            file_idx = []

            for fname in file_names:
                fname_path = PurePath(fname)
                file_stem = fname_path.name

                pattern = rf"^{re.escape(base_name)}\.{model_parallel_rank}\.(\d+){re.escape(file_extension)}$"
                match = re.match(pattern, file_stem)
                if match:
                    file_idx.append(int(match.group(1)))
            file_idx.sort()
            # If we are saving index by 1 to get the next free file name
            if saving:
                checkpoint_filename = checkpoint_filename + f".{file_idx[-1]+1}"
            else:
                checkpoint_filename = checkpoint_filename + f".{file_idx[-1]}"
            checkpoint_filename += file_extension
        else:
            checkpoint_filename += ".0" + file_extension

    return checkpoint_filename


def _unique_model_names(
    models: List[torch.nn.Module],
    loading: bool = False,
) -> Dict[str, torch.nn.Module]:
    """Util to clean model names and index if repeat names, will also strip DDP wrappers
     and torch dynamo wrappers if they exist.

    Parameters
    ----------
    model :  List[torch.nn.Module]
        List of models to generate names for.
    loading : bool, optional
        Whether the models are being loaded, by default False.

    Returns
    -------
    Dict[str, torch.nn.Module]
        Dictionary of model names and respective modules
    """
    # Loop through provided models and set up base names
    model_dict = {}
    for model0 in models:
        if hasattr(model0, "module"):
            # Strip out DDP layer
            model0 = model0.module
        # Strip out torch dynamo wrapper
        if isinstance(model0, torch._dynamo.eval_frame.OptimizedModule):
            model0 = model0._orig_mod
            is_compiled = True
        else:
            is_compiled = False
        # Base name of model is meta.name unless pytorch model
        base_name = model0.__class__.__name__
        if isinstance(model0, physicsnemo.models.Module):
            base_name = model0.meta.name
        # Warning in case of attempt to load into a compiled model
        if is_compiled and loading:
            checkpoint_logging.warning(
                f"Model {base_name} is already compiled, consider loading first and then compiling."
            )
        # If we have multiple models of the same name, introduce another index
        if base_name in model_dict:
            model_dict[base_name].append(model0)
        else:
            model_dict[base_name] = [model0]

    # Set up unique model names if needed
    output_dict = {}
    for key, model in model_dict.items():
        if len(model) > 1:
            for i, model0 in enumerate(model):
                output_dict[key + str(i)] = model0
        else:
            output_dict[key] = model[0]

    return output_dict


[docs]def save_checkpoint( path: str, models: Union[torch.nn.Module, List[torch.nn.Module], None] = None, optimizer: Union[optimizer, None] = None, scheduler: Union[scheduler, None] = None, scaler: Union[scaler, None] = None, epoch: Union[int, None] = None, metadata: Optional[Dict[str, Any]] = None, ) -> None: """Training checkpoint saving utility This will save a training checkpoint in the provided path following the file naming convention "checkpoint.{model parallel id}.{epoch/index}.mdlus". The load checkpoint method in PhysicsNeMo core can then be used to read this file. Parameters ---------- path : str Path to save the training checkpoint models : Union[torch.nn.Module, List[torch.nn.Module], None], optional A single or list of PyTorch models, by default None optimizer : Union[optimizer, None], optional Optimizer, by default None scheduler : Union[scheduler, None], optional Learning rate scheduler, by default None scaler : Union[scaler, None], optional AMP grad scaler. Will attempt to save on in static capture if none provided, by default None epoch : Union[int, None], optional Epoch checkpoint to load. If none this will save the checkpoint in the next valid index, by default None metadata : Optional[Dict[str, Any]], optional Additional metadata to save, by default None """ protocol = fsspec.utils.get_protocol(path) fs = fsspec.filesystem(protocol) # Create checkpoint directory if it does not exist. # Only applicable to Posix filesystems ("file" protocol), not object stores. if protocol == "file" and not Path(path).is_dir(): checkpoint_logging.warning( f"Output directory {path} does not exist, will " "attempt to create" ) Path(path).mkdir(parents=True, exist_ok=True) # == Saving model checkpoint == if models: if not isinstance(models, list): models = [models] models = _unique_model_names(models) for name, model in models.items(): # Get model type model_type = ( "mdlus" if isinstance(model, physicsnemo.models.Module) else "pt" ) # Get full file path / name file_name = _get_checkpoint_filename( path, name, index=epoch, saving=True, model_type=model_type ) # Save state dictionary if isinstance(model, physicsnemo.models.Module): model.save(file_name) else: with fs.open(file_name, "wb") as fp: torch.save(model.state_dict(), fp) checkpoint_logging.success(f"Saved model state dictionary: {file_name}") # == Saving training checkpoint == checkpoint_dict = {} # Optimizer state dict if optimizer: opt_state_dict = optimizer.state_dict() # Strip out torch dynamo wrapper prefix for pg in opt_state_dict.get("param_groups", []): param_names = pg.get("param_names") if param_names is None: continue pg["param_names"] = [pn.removeprefix("_orig_mod.") for pn in param_names] checkpoint_dict["optimizer_state_dict"] = opt_state_dict # Scheduler state dict if scheduler: checkpoint_dict["scheduler_state_dict"] = scheduler.state_dict() # Scaler state dict if scaler: checkpoint_dict["scaler_state_dict"] = scaler.state_dict() # Static capture is being used, save its grad scaler if _StaticCapture._amp_scalers: checkpoint_dict["static_capture_state_dict"] = _StaticCapture.state_dict() # Output file name output_filename = _get_checkpoint_filename( path, index=epoch, saving=True, model_type="pt" ) if epoch: checkpoint_dict["epoch"] = epoch if metadata: checkpoint_dict["metadata"] = metadata # Save checkpoint to memory if bool(checkpoint_dict): with fs.open(output_filename, "wb") as fp: torch.save( checkpoint_dict, fp, ) checkpoint_logging.success(f"Saved training checkpoint: {output_filename}")
[docs]def load_checkpoint( path: str, models: Union[torch.nn.Module, List[torch.nn.Module], None] = None, optimizer: Union[optimizer, None] = None, scheduler: Union[scheduler, None] = None, scaler: Union[scaler, None] = None, epoch: Union[int, None] = None, metadata_dict: Optional[Dict[str, Any]] = {}, device: Union[str, torch.device] = "cpu", ) -> int: """Checkpoint loading utility This loader is designed to be used with the save checkpoint utility in PhysicsNeMo Launch. Given a path, this method will try to find a checkpoint and load state dictionaries into the provided training objects. Parameters ---------- path : str Path to training checkpoint models : Union[torch.nn.Module, List[torch.nn.Module], None], optional A single or list of PyTorch models, by default None optimizer : Union[optimizer, None], optional Optimizer, by default None scheduler : Union[scheduler, None], optional Learning rate scheduler, by default None scaler : Union[scaler, None], optional AMP grad scaler, by default None epoch : Union[int, None], optional Epoch checkpoint to load. If none is provided this will attempt to load the checkpoint with the largest index, by default None metadata_dict: Optional[Dict[str, Any]], optional Dictionary to store metadata from the checkpoint, by default None device : Union[str, torch.device], optional Target device, by default "cpu" Returns ------- int Loaded epoch """ fs = fsspec.filesystem(fsspec.utils.get_protocol(path)) # Check if checkpoint directory exists if fs.exists(path): if fs.isfile(path): raise FileNotFoundError( f"Provided checkpoint directory {path} is a file, not directory" ) else: checkpoint_logging.warning( f"Provided checkpoint directory {path} does not exist, skipping load" ) return 0 # == Loading model checkpoint == if models: if not isinstance(models, list): models = [models] models = _unique_model_names(models, loading=True) for name, model in models.items(): # Get model type model_type = ( "mdlus" if isinstance(model, physicsnemo.models.Module) else "pt" ) # Get full file path / name file_name = _get_checkpoint_filename( path, name, index=epoch, model_type=model_type ) if not fs.exists(file_name): checkpoint_logging.error( f"Could not find valid model file {file_name}, skipping load" ) continue # Load state dictionary if isinstance(model, physicsnemo.models.Module): model.load(file_name) else: file_to_load = _cache_if_needed(file_name) model.load_state_dict(torch.load(file_to_load, map_location=device)) checkpoint_logging.success( f"Loaded model state dictionary {file_name} to device {device}" ) # == Loading training checkpoint == checkpoint_filename = _get_checkpoint_filename(path, index=epoch, model_type="pt") if not fs.exists(checkpoint_filename): checkpoint_logging.warning( "Could not find valid checkpoint file, skipping load" ) return 0 file_to_load = _cache_if_needed(checkpoint_filename) checkpoint_dict = torch.load(file_to_load, map_location=device) checkpoint_logging.success( f"Loaded checkpoint file {checkpoint_filename} to device {device}" ) # Optimizer state dict if optimizer and "optimizer_state_dict" in checkpoint_dict: optimizer.load_state_dict(checkpoint_dict["optimizer_state_dict"]) checkpoint_logging.success("Loaded optimizer state dictionary") # Scheduler state dict if scheduler and "scheduler_state_dict" in checkpoint_dict: scheduler.load_state_dict(checkpoint_dict["scheduler_state_dict"]) checkpoint_logging.success("Loaded scheduler state dictionary") # Scaler state dict if scaler and "scaler_state_dict" in checkpoint_dict: scaler.load_state_dict(checkpoint_dict["scaler_state_dict"]) checkpoint_logging.success("Loaded grad scaler state dictionary") if "static_capture_state_dict" in checkpoint_dict: _StaticCapture.load_state_dict(checkpoint_dict["static_capture_state_dict"]) checkpoint_logging.success("Loaded static capture state dictionary") epoch = 0 if "epoch" in checkpoint_dict: epoch = checkpoint_dict["epoch"] # Update metadata if exists and the dictionary object is provided metadata = checkpoint_dict.get("metadata", {}) for key, value in metadata.items(): metadata_dict[key] = value return epoch
[docs]def get_checkpoint_dir(base_dir: str, model_name: str) -> str: """Get a checkpoint directory based on a given base directory and model name Parameters ---------- base_dir : str Path to the base directory where checkpoints are stored model_name: str, optional Name of the model which is generating the checkpoint Returns ------- str Checkpoint directory """ top_level_dir = f"checkpoints_{model_name}" protocol = fsspec.utils.get_protocol(base_dir) if protocol == "msc": if not base_dir.endswith("/"): base_dir += "/" return base_dir + top_level_dir else: return os.path.join(base_dir, top_level_dir)

# Read via cache and return the cached path for non-file protocols, otherwise just return the path def _cache_if_needed(path: str) -> str: protocol = fsspec.utils.get_protocol(path) if protocol == "file": return path else: return _download_cached( path, recursive=False, local_cache_path=os.path.join(LOCAL_CACHE, f"checkpoint_pid_{os.getpid()}"), )

© Copyright 2023, NVIDIA PhysicsNeMo Team. Last updated on Jun 11, 2025.