Planner Guide#

Deployment, configuration, and integration guide for the Dynamo SLA Planner. For a quick overview, see the Planner README. For architecture internals, see Planner Design.

Deployment#

Prerequisites#

Before deploying the planner, ensure:

  • Dynamo platform installed with the operator running (see Installation Guide)

  • kube-prometheus-stack installed and running (required for SLA planner metric collection)

  • Image pull secrets configured if using private registries (typically nvcr-imagepullsecret for NVIDIA images)

  • Sufficient GPU resources available in your cluster for profiling

  • Runtime images available that contain both profiler and runtime components

Container Images#

Each DGDR requires container images for the profiling and deployment process:

profilingConfig.profilerImage (Required): The container image used for the profiling job. Must contain the profiler code and dependencies for SLA-based profiling.

deploymentOverrides.workersImage (Optional): The container image used for DGD worker components (frontend, workers, planner). Used for:

  • Temporary DGDs created during online profiling (for performance measurements)

  • The final DGD deployed after profiling completes

If workersImage is omitted, the image from the base config file (e.g., disagg.yaml) is used. Public images are available from 0.6.1 onward.

spec:
  profilingConfig:
    profilerImage: "nvcr.io/nvidia/ai-dynamo/vllm-runtime:0.6.1"
  deploymentOverrides:
    workersImage: "nvcr.io/nvidia/ai-dynamo/vllm-runtime:0.6.1"  # Optional

What is a DynamoGraphDeploymentRequest (DGDR)?#

A DGDR is a Kubernetes Custom Resource that serves as the primary interface for deploying models with specific performance and resource constraints. It specifies:

  • What model to deploy (model)

  • How it should perform (SLA targets: ttft, itl)

  • Where it should run (optional GPU preferences)

  • Which backend to use (backend: vllm, sglang, or trtllm)

  • Which images to use (profilingConfig.profilerImage, deploymentOverrides.workersImage)

The Dynamo Operator watches for DGDRs and automatically:

  1. Discovers available GPU resources in your cluster

  2. Runs profiling (online or offline) to find optimal configurations

  3. Generates an optimized DynamoGraphDeployment (DGD) configuration

  4. Deploys the DGD to your cluster

Key Benefits:

  • Declarative: Specify what you want, not how to achieve it

  • Automated: No manual profiling job setup or result processing

  • SLA-Driven: Ensures deployments meet your performance requirements

  • Integrated: Works seamlessly with the Dynamo Operator

DGDR Workflow#

The DGDR workflow automates the entire process from SLA specification to deployment:

  1. Define SLAs: Specify performance requirements (TTFT, ITL) and model information

  2. Automatic Profiling: The operator profiles your model to find optimal configurations

  3. Auto-Deploy: The system deploys the optimal configuration that meets your SLAs

        flowchart TD
    A[Create DGDR] --> B[DGDR Controller]
    B --> C{Profiling Method}
    C -->|Online| D[Run Profiling Job<br/>2-4 hours]
    C -->|Offline/AIC| E[AI Configurator<br/>20-30 seconds]
    D --> F[Generate DGD Config]
    E --> F
    F --> G[Auto-Deploy DGD]
    G --> H[Monitor & Scale]

    style A fill:#e1f5fe
    style D fill:#fff3e0
    style E fill:#e8f5e8
    style G fill:#f3e5f5
    style H fill:#fff8e1
    

Monitoring Progress#

Watch DGDR status:

# View status
kubectl get dgdr -n $NAMESPACE

# Detailed status
kubectl describe dgdr sla-aic -n $NAMESPACE

# Watch profiling job logs
kubectl logs -f job/profile-sla-aic -n $NAMESPACE

DGDR Status States:

  • Pending: Initial state, preparing to profile

  • Profiling: Running profiling job (20-30 seconds for AIC, 2-4 hours for online)

  • Deploying: Generating and applying DGD configuration

  • Ready: DGD successfully deployed and running

  • Failed: Error occurred (check events for details)

Relationship to DGD#

  • DGDR: High-level “intent” – what you want deployed

  • DGD: Low-level “implementation” – how it’s deployed

The DGDR controller generates a DGD that:

  • Uses optimal TP configurations from profiling

  • Includes the SLA planner for autoscaling

  • Has deployment and engine settings tuned for your SLAs

The generated DGD is tracked via labels:

metadata:
  labels:
    dgdr.nvidia.com/name: sla-aic
    dgdr.nvidia.com/namespace: your-namespace

Configuration#

DGDR Configuration#

Required Fields#

Field

Type

Description

spec.model

string

Model identifier (e.g., meta-llama/Llama-3-70b)

spec.backend

enum

Inference backend: vllm, sglang, or trtllm

spec.profilingConfig.profilerImage

string

Container image for profiling job

spec.profilingConfig.config.sla

object

SLA targets (isl, osl, ttft, itl)

Optional Fields#

Field

Type

Description

spec.deploymentOverrides.workersImage

string

Container image for DGD workers. If omitted, uses image from base config.

spec.autoApply

boolean

Automatically deploy DGD after profiling (default: false)

spec.useMocker

boolean

Deploy mocker instead of real backend (default: false)

spec.deploymentOverrides

object

Customize metadata and image for auto-created DGD

SLA Configuration#

sla:
  isl: 3000      # Average input sequence length (tokens)
  osl: 150       # Average output sequence length (tokens)
  ttft: 200      # Target Time To First Token (milliseconds, float)
  itl: 20        # Target Inter-Token Latency (milliseconds, float)

Choosing SLA Values:

  • ISL/OSL: Based on your expected traffic patterns

  • TTFT: First token latency target (lower = more GPUs needed)

  • ITL: Token generation latency target (lower = more GPUs needed)

  • Trade-offs: Tighter SLAs require more GPU resources

For comprehensive documentation of all configuration options, see the DGDR Configuration Reference.

Profiling Methods#

Choose between online profiling (real measurements, 2-4 hours) or offline profiling with AI Configurator (estimated, 20-30 seconds):

# Online Profiling (Default)
sweep:
  useAiConfigurator: false

# Offline Profiling (AI Configurator)
sweep:
  useAiConfigurator: true
  aicSystem: h200_sxm
  aicHfId: Qwen/Qwen3-32B
  aicBackendVersion: "0.20.0"

For detailed comparison, supported configurations, and limitations, see SLA-Driven Profiling Documentation.

Load Predictors#

The SLA planner forecasts the number of requests, ISL, and OSL in the next adjustment interval. Four prediction models are supported:

Constant Predictor#

  • Use case: Stable workloads with long prediction intervals

  • Behavior: Assumes next load equals current load

  • Configuration: load-predictor: "constant"

ARIMA Predictor#

  • Use case: Time-series data with trends and seasonality

  • Behavior: Uses auto-ARIMA to fit optimal model parameters

  • Configuration: load-predictor: "arima"

  • Tunable parameters:

    • --load-predictor-log1p: model log1p(y) instead of y. If not set, ARIMA starts in raw space, and if it collapses to (0,d,0), it falls back to log1p automatically.

Kalman Predictor#

  • Use case: Low-latency online forecasting (observe 1 -> predict 1) with smooth adaptation

  • Behavior: Local linear trend Kalman filter (fast online updates; good default when ARIMA collapses to mean-only)

  • Configuration: load-predictor: "kalman"

  • Tunable parameters:

    • --kalman-q-level: process noise for level (higher = more responsive)

    • --kalman-q-trend: process noise for trend (higher = trend changes faster)

    • --kalman-r: measurement noise (lower = trusts new measurements more)

    • --kalman-min-points: minimum points before forecasting

    • --load-predictor-log1p: model log1p(y) instead of y (often helps request-rate/count series)

Prophet Predictor#

  • Use case: Complex seasonal patterns and trend changes

  • Behavior: Facebook’s Prophet model for time-series forecasting

  • Configuration: load-predictor: "prophet"

  • Tunable parameters:

    • --prophet-window-size: bounds internal history to control refit cost

    • --load-predictor-log1p: model log1p(y) instead of y

Warm-starting Load Predictors (Optional)#

You can warm-start load predictors with a mooncake-style JSONL trace file:

  • CLI argument: --load-predictor-warmup-trace <path/to/trace.jsonl>

  • Effect: preloads predictors with historical request-count / ISL / OSL samples extracted from the trace

Planner Scaling Parameters#

Argument

Default

Description

--adjustment-interval

180

Seconds between scaling decisions

--ttft

500.0

Target Time To First Token (ms)

--itl

50.0

Target Inter-Token Latency (ms)

--isl

3000

Expected average input sequence length

--osl

150

Expected average output sequence length

--max-gpu-budget

8

Maximum GPUs across all workers

--min-endpoint

1

Minimum replicas per worker type

--decode-engine-num-gpu

1

GPUs per decode engine

--prefill-engine-num-gpu

1

GPUs per prefill engine

--no-operation

false

Observation mode (no actual scaling)

--no-correction

false

Disable correction factors

Planner Configuration Passthrough#

Add planner-specific settings in the DGDR:

profilingConfig:
  config:
    planner:
      plannerMinEndpoint: 2

Integration#

Prometheus Setup#

The planner queries Prometheus to collect frontend request metrics. The architecture:

        flowchart LR
  Frontend --"/metrics"--> Prometheus
  Planner --"query API"--> Prometheus
  Planner --"scaling decisions"--> Workers
  Frontend -.->|"requests"| Workers
    

Components:

  • Frontend: Serves requests and exposes /metrics

  • Prometheus: Scrapes frontend metrics every 5s (configurable in podmonitor manifest)

  • Planner: Queries Prometheus and adjusts worker scaling every adjustment interval

  • Workers: Prefill and backend workers handle inference

The planner requires a frontend that reports metrics at the /metrics HTTP endpoint with request count, ISL, OSL, TTFT, and ITL in the correct format. The Dynamo frontend provides these metrics automatically.

Prometheus endpoint configuration:

Variable

Default

PROMETHEUS_ENDPOINT

http://prometheus-kube-prometheus-prometheus.monitoring.svc.cluster.local:9090

If you see errors like “Failed to resolve prometheus service”, ensure PROMETHEUS_ENDPOINT points to your Prometheus service.

Virtual Deployment#

The SLA planner supports virtual deployment mode for customized environments (e.g., custom orchestrators) through the VirtualConnector. This connector enables the planner to communicate scaling decisions without directly managing Kubernetes resources.

The VirtualConnector acts as a bridge between the SLA planner and external deployment environments. Instead of PATCHing DGD resources, it writes scaling decisions and waits for the external environment to acknowledge completion.

Scaling Decision Flow#

  1. Decision Generation: The planner calculates optimal worker counts

  2. Change Detection: Skips scaling if target counts match current counts, logging: "No scaling needed (prefill=X, decode=Y)"

  3. Readiness Check: Verifies previous scaling operations completed by checking scaled_decision_id >= decision_id

  4. Timeout Handling: If not acknowledged within 30 minutes (1800 seconds), proceeds with new decisions

  5. Completion Tracking: Optionally waits for scaling completion confirmation (blocking mode)

Configuration#

To use virtual deployment mode:

environment: "virtual"
backend: "vllm"  # or "sglang"

Deployment Environment Requirements#

The external deployment environment must use VirtualConnectorClient:

from dynamo._core import DistributedRuntime, VirtualConnectorClient

client = VirtualConnectorClient(distributed_runtime, namespace)
  1. Monitor Planner: Continuously watch for scaling decisions: await client.wait() (blocks until change)

  2. Parse Decisions: Read values: decision = await client.get()

  3. Execute Scaling: Apply the scaling decisions to your infrastructure

  4. Acknowledge Completion: Mark done: await client.complete(decision)

A scaling decision (returned by client.get()) contains:

  • num_prefill_workers: Target number of prefill workers (-1 if not set)

  • num_decode_workers: Target number of decode workers (-1 if not set)

  • decision_id: Incremental ID for each scaling decision

See components/planner/test/test_virtual_connector.py for a full example.

Grafana Dashboard#

Deploy the planner Grafana dashboard:

kubectl apply -n monitoring -f deploy/observability/k8s/grafana-planner-dashboard-configmap.yaml

Follow Dynamo Metrics Collection on Kubernetes to access the Grafana UI and select the Dynamo Planner Dashboard.

The dashboard displays:

  • Worker Counts & GPU Usage: Current prefill/decode worker counts and cumulative GPU hours

  • Observed Metrics: Real-time TTFT, ITL, request rate, and sequence lengths from Prometheus

  • Predicted Metrics: Planner’s load predictions and recommended replica counts

  • Correction Factors: How the planner adjusts predictions based on observed vs expected performance

Use the Namespace dropdown at the top of the dashboard to filter metrics for your deployment namespace.

DGDR Immutability#

DGDRs are immutable. To update SLAs or configuration:

  1. Delete the existing DGDR: kubectl delete dgdr sla-aic

  2. Create a new DGDR with updated specifications

Manual Deployment Control#

Option 2: Use Standalone Planner Templates (Advanced)#

For advanced use cases, use the standalone planner templates in examples/backends/*/deploy/disagg_planner.yaml:

# After profiling completes, profiling data is stored in ConfigMaps
kubectl get configmap dgdr-output-<dgdr-name> -n $NAMESPACE -o yaml
kubectl get configmap planner-profile-data -n $NAMESPACE -o yaml

# Update PROMETHEUS_ENDPOINT in the template, then deploy
kubectl apply -f examples/backends/<backend>/deploy/disagg_planner.yaml -n $NAMESPACE

Accessing Profiling Artifacts#

By default, profiling jobs save essential data to ConfigMaps. For detailed artifacts, configure the DGDR to use dynamo-pvc:

ConfigMaps (always created):

  • Generated DGD configuration

  • Profiling data for Planner (.json files)

PVC (optional):

  • Performance plots (PNGs)

  • DGD configuration and logs for each profiled deployment

  • AIPerf profiling artifacts

  • Raw profiling data (.npz files)

  • Profiler log

# Setup PVC
deploy/utils/setup_benchmarking_resources.sh

# Access results after profiling
kubectl apply -f deploy/utils/manifests/pvc-access-pod.yaml -n $NAMESPACE
kubectl wait --for=condition=Ready pod/pvc-access-pod -n $NAMESPACE --timeout=60s
kubectl cp $NAMESPACE/pvc-access-pod:/data ./profiling-results
kubectl delete pod pvc-access-pod -n $NAMESPACE

Troubleshooting#

Quick Diagnostics#

# Check DGDR status and events
kubectl describe dgdr sla-aic -n $NAMESPACE

# Check operator logs
kubectl logs -n $NAMESPACE -l app.kubernetes.io/name=dynamo-operator --tail=100

# Check profiling job logs
kubectl logs -l job-name=profile-sla-aic -n $NAMESPACE

Common Issues#

Issue

Quick Fix

DGDR stuck in Pending

Check GPU availability: kubectl get nodes -o jsonpath='{.items[*].status.allocatable.nvidia\.com/gpu}'

Image pull errors

Verify secret exists: kubectl get secret nvcr-imagepullsecret -n $NAMESPACE

Profiling fails

Check job logs: kubectl logs -l job-name=profile-sla-aic -n $NAMESPACE

SLA cannot be met

Relax TTFT/ITL targets or add more GPUs

DGD not deployed

Verify autoApply: true in DGDR spec

Prometheus errors

Ensure PROMETHEUS_ENDPOINT env var points to your Prometheus service

For comprehensive troubleshooting including AI Configurator constraints, performance debugging, and backend-specific issues, see SLA-Driven Profiling Troubleshooting.