SLA-Driven Profiling and Planner Deployment Quick Start Guide#

Complete workflow to deploy SLA-optimized Dynamo models using DynamoGraphDeploymentRequests (DGDR). This guide shows how to automatically profile models and deploy them with optimal configurations that meet your Service Level Agreements (SLAs).

Important

Prerequisites: This guide assumes you have a Kubernetes cluster with GPU nodes and have completed the Dynamo Platform installation.

Overview#

The DGDR workflow automates the entire process from SLA specification to deployment:

  1. Define SLAs: Specify performance requirements (TTFT, ITL) and model information in a DGDR Custom Resource

  2. Automatic Profiling: The Dynamo Operator automatically profiles your model to find optimal configurations

  3. Auto-Deploy: The system automatically deploys the optimal configuration that meets your SLAs

        flowchart TD
    A[Create DGDR] --> B[DGDR Controller]
    B --> C{Profiling Method}
    C -->|Online| D[Run Profiling Job<br/>2-4 hours]
    C -->|Offline/AIC| E[AI Configurator<br/>20-30 seconds]
    D --> F[Generate DGD Config]
    E --> F
    F --> G[Auto-Deploy DGD]
    G --> H[Monitor & Scale]

    style A fill:#e1f5fe
    style D fill:#fff3e0
    style E fill:#e8f5e8
    style G fill:#f3e5f5
    style H fill:#fff8e1
    

What is a DynamoGraphDeploymentRequest (DGDR)?#

A DynamoGraphDeploymentRequest (DGDR) is a Kubernetes Custom Resource that serves as the primary interface for users to request model deployments with specific performance and resource constraints. Think of it as a “deployment order” where you specify:

  • What model you want to deploy (model)

  • How it should perform (SLA targets: ttft, itl)

  • Where it should run (optional GPU preferences)

  • Which backend to use (backend: vllm, sglang, or trtllm)

  • Which images to use (profilingConfig.profilerImage, deploymentOverrides.workersImage)

The Dynamo Operator watches for DGDRs and automatically:

  1. Discovers available GPU resources in your cluster

  2. Runs profiling (online or offline) to find optimal configurations

  3. Generates an optimized DynamoGraphDeployment (DGD) configuration

  4. Deploys the DGD to your cluster

Key Benefits:

  • Declarative: Specify what you want, not how to achieve it

  • Automated: No manual profiling job setup or result processing

  • SLA-Driven: Ensures deployments meet your performance requirements

  • Integrated: Works seamlessly with the Dynamo Operator

Prerequisites#

Before creating a DGDR, ensure:

  • Dynamo platform installed with the operator running (see Installation Guide)

  • kube-prometheus-stack installed and running (required for SLA planner)

  • Image pull secrets configured if using private registries (typically nvcr-imagepullsecret for NVIDIA images)

  • Sufficient GPU resources available in your cluster for profiling

  • Runtime images available that contain both profiler and runtime components

Container Images#

Each DGDR requires you to specify container images for the profiling and deployment process:

profilingConfig.profilerImage (Required): Specifies the container image used for the profiling job itself. This image must contain the profiler code and dependencies needed for SLA-based profiling.

deploymentOverrides.workersImage (Optional): Specifies the container image used for DynamoGraphDeployment worker components (frontend, workers, planner). This image is used for:

  • Temporary DGDs created during online profiling (for performance measurements)

  • The final DGD deployed after profiling completes

If workersImage is omitted, the image from the base config file (e.g., disagg.yaml) is used. You may use our public images (0.6.1 and later) or build and push your own.

spec:
  profilingConfig:
    profilerImage: "nvcr.io/nvidia/ai-dynamo/vllm-runtime:0.6.1"
  deploymentOverrides:
    workersImage: "nvcr.io/nvidia/ai-dynamo/vllm-runtime:0.6.1"  # Optional

Quick Start: Deploy with DGDR#

Step 1: Create Your DGDR#

Dynamo provides sample DGDR configurations in benchmarks/profiler/deploy/. You can use these as starting points:

Available Sample DGDRs:

  • profile_sla_dgdr.yaml: Standard online profiling for dense models

  • profile_sla_aic_dgdr.yaml: Fast offline profiling using AI Configurator (TensorRT-LLM)

  • profile_sla_moe_dgdr.yaml: Online profiling for MoE models (SGLang)

Or, you can create your own DGDR for your own needs:

apiVersion: nvidia.com/v1alpha1
kind: DynamoGraphDeploymentRequest
metadata:
  name: my-model-deployment  # Change the name
  namespace: default         # Change the namespace
spec:
  model: "Qwen/Qwen3-0.6B"     # Update to your model
  backend: vllm                # Backend: vllm, sglang, or trtllm

  profilingConfig:
    profilerImage: "nvcr.io/nvidia/ai-dynamo/vllm-runtime:0.6.1"  # Required
    config:
      sla:
        isl: 3000    # Adjust to your workload
        osl: 150     # Adjust to your workload
        ttft: 200    # Your target (ms)
        itl: 20      # Your target (ms)

      sweep:
        use_ai_configurator: false  # Set to true for fast profiling (TensorRT-LLM only)

  deploymentOverrides:
    workersImage: "nvcr.io/nvidia/ai-dynamo/vllm-runtime:0.6.1"  # Optional

  autoApply: true  # Auto-deploy after profiling

Tip

For detailed explanations of all configuration options (SLA, hardware, sweep, AIC, planner), see the DGDR Configuration Reference.

Step 2: Apply the DGDR#

The rest of this quickstart will use the DGDR sample that uses AIC profiling. If you use a different DGDR file and/or name, be sure to adjust the commands accordingly.

export NAMESPACE=your-namespace
kubectl apply -f benchmarks/profiler/deploy/profile_sla_aic_dgdr.yaml -n $NAMESPACE

The Dynamo Operator will immediately begin processing your request.

Step 3: Monitor Progress#

Watch the DGDR status:

# View status
kubectl get dgdr -n $NAMESPACE

# Detailed status
kubectl describe dgdr sla-aic -n $NAMESPACE

# Watch profiling job logs
kubectl logs -f job/profile-sla-aic -n $NAMESPACE

DGDR Status States:

  • Pending: Initial state, preparing to profile

  • Profiling: Running profiling job (20-30 seconds for AIC, 2-4 hours for online)

  • Deploying: Generating and applying DGD configuration

  • Ready: DGD successfully deployed and running

  • Failed: Error occurred (check events for details)

Note

With AI Configurator, profiling completes in 20-30 seconds! This is much faster than online profiling which takes 2-4 hours.

Step 4: Access Your Deployment#

Once the DGDR reaches Ready state, your model is deployed and ready to serve:

# Find the frontend service
kubectl get svc -n $NAMESPACE | grep trtllm-disagg

# Port-forward to access locally
kubectl port-forward svc/trtllm-disagg-frontend 8000:8000 -n $NAMESPACE

# Test the endpoint
curl http://localhost:8000/v1/models

Step 5 (Optional): Access the Planner Grafana Dashboard#

If you want to monitor the SLA Planner’s decision-making in real-time, you can deploy the Planner Grafana dashboard.

kubectl apply -n monitoring -f deploy/observability/k8s/grafana-planner-dashboard-configmap.yaml

Follow the instructions in Dynamo Metrics Collection on Kubernetes to access the Grafana UI and select the Dynamo Planner Dashboard.

The dashboard displays:

  • Worker Counts & GPU Usage: Current prefill/decode worker counts and cumulative GPU hours

  • Observed Metrics: Real-time TTFT, ITL, request rate, and sequence lengths from Prometheus

  • Predicted Metrics: Planner’s load predictions and recommended replica counts

  • Correction Factors: How the planner adjusts predictions based on observed vs expected performance

Tip

Use the Namespace dropdown at the top of the dashboard to filter metrics for your specific deployment namespace.

DGDR Configuration Details#

Required Fields#

Field

Type

Description

spec.model

string

Model identifier (e.g., “meta-llama/Llama-3-70b”)

spec.backend

enum

Inference backend: vllm, sglang, or trtllm

spec.profilingConfig.profilerImage

string

Container image for profiling job

spec.profilingConfig.config.sla

object

SLA targets (isl, osl, ttft, itl)

Optional Fields#

Field

Type

Description

spec.deploymentOverrides.workersImage

string

Container image for DGD worker components. If omitted, uses image from base config file.

spec.autoApply

boolean

Automatically deploy DGD after profiling (default: false)

spec.deploymentOverrides

object

Customize metadata (name, namespace, labels, annotations) and image for auto-created DGD

SLA Configuration#

The sla section defines performance requirements and workload characteristics:

sla:
  isl: 3000      # Average input sequence length (tokens)
  osl: 150       # Average output sequence length (tokens)
  ttft: 200      # Target Time To First Token (milliseconds, float)
  itl: 20        # Target Inter-Token Latency (milliseconds, float)

Choosing SLA Values:

  • ISL/OSL: Based on your expected traffic patterns

  • TTFT: First token latency target (lower = more GPUs needed)

  • ITL: Token generation latency target (lower = more GPUs needed)

  • Trade-offs: Tighter SLAs require more GPU resources

Profiling Methods#

Choose between online profiling (real measurements, 2-4 hours) or offline profiling with AI Configurator (estimated, 20-30 seconds):

# Online Profiling (Default)
sweep:
  use_ai_configurator: false

# Offline Profiling (AI Configurator - TensorRT-LLM only)
sweep:
  use_ai_configurator: true
  aic_system: h200_sxm
  aic_hf_id: Qwen/Qwen3-32B
  aic_backend_version: "0.20.0"

Note

For detailed comparison, supported configurations, and limitations, see SLA-Driven Profiling Documentation.

Hardware Configuration#

For details on hardware configuration and GPU discovery options, see Hardware Configuration in SLA-Driven Profiling.

Advanced Configuration#

Inline Configuration (Simple Use Cases)#

For simple use cases without a custom DGD config, provide profiler configuration directly. The profiler will auto-generate a basic DGD configuration from your model and backend:

profilingConfig:
  config:
    # SLA targets (required for profiling)
    sla:
      isl: 8000   # Input sequence length
      osl: 200    # Output sequence length
      ttft: 200.0 # Time To First Token (ms)
      itl: 10.0   # Inter-Token Latency (ms)

    # Hardware constraints (optional)
    hardware:
      min_num_gpus_per_engine: 2
      max_num_gpus_per_engine: 8
      gpu_type: h200_sxm

    # Profiling sweep settings (optional)
    sweep:
      prefill_interpolation_granularity: 16  # Number of samples for prefill ISL sweep
      decode_interpolation_granularity: 6    # Number of samples for decode sweep

Note: engine.config is a file path to a DGD YAML file, not inline configuration. Use ConfigMapRef (recommended) or leave it unset to auto-generate.

Planner Configuration Passthrough#

Add planner-specific settings. Planner arguments use a planner_ prefix:

profilingConfig:
  config:
    planner:
      planner_min_endpoint: 2

Understanding Profiling Results#

For details about the profiling process, performance plots, and interpolation data, see SLA-Driven Profiling Documentation.

Advanced Topics#

DGDR Immutability#

DGDRs are immutable - if you need to update SLAs or configuration:

  1. Delete the existing DGDR: kubectl delete dgdr sla-aic

  2. Create a new DGDR with updated specifications

Manual Deployment Control#

There are two ways to manually control deployment after profiling:

Option 2: Use Standalone Planner Templates (Advanced)#

For advanced use cases, you can manually deploy using the standalone planner templates in examples/backends/*/deploy/disagg_planner.yaml:

# After profiling completes, profiling data is automatically stored in ConfigMaps

# OPTIONAL: Inspect profiling results stored in ConfigMaps
# View the generated DGD configuration
kubectl get configmap dgdr-output-<dgdr-name> -n $NAMESPACE -o yaml

# View the planner profiling data (JSON format)
kubectl get configmap planner-profile-data -n $NAMESPACE -o yaml

# Update the PROMETHEUS_ENDPOINT environment variable in the planner template
# to match your cluster's Prometheus service location (see comments in the template)

# Update backend planner manifest as needed, then deploy
kubectl apply -f examples/backends/<backend>/deploy/disagg_planner.yaml -n $NAMESPACE

Note: The standalone templates are provided as examples and may need customization for your model and requirements. The DGDR-generated configuration (Option 1) is recommended as it’s automatically tuned to your profiling results and SLA targets.

Important - Prometheus Configuration: The planner queries Prometheus to get frontend request metrics for scaling decisions. If you see errors like “Failed to resolve prometheus service”, ensure the PROMETHEUS_ENDPOINT environment variable in your planner configuration correctly points to your Prometheus service. See the comments in the example templates for details.

Relationship to DynamoGraphDeployment (DGD)#

  • DGDR: High-level “intent” - what you want deployed

  • DGD: Low-level “implementation” - how it’s deployed

The DGDR controller generates a DGD that:

  • Uses optimal TP configurations from profiling

  • Includes SLA planner for autoscaling

  • Has deployment and engine settings tuned for your SLAs

The generated DGD is tracked via labels:

metadata:
  labels:
    dgdr.nvidia.com/name: sla-aic
    dgdr.nvidia.com/namespace: your-namespace

Accessing Detailed Profiling Artifacts#

By default, profiling jobs save essential data to ConfigMaps for planner integration. For advanced users who need access to detailed artifacts (logs, performance plots, AIPerf results, etc), configure the DGDR to use dynamo-pvc. This is optional and will not affect the functionality of profiler or Planner.

What’s available in ConfigMaps (always created):

  • Generated DGD configuration

  • Profiling data for Planner (.json files)

What’s available in PVC if attached to DGDR (optional):

  • Performance plots (PNGs)

  • DGD configuration and logs of all services for each profiled deployment

  • AIPerf profiling artifacts for each AIPerf run

  • Raw profiling data (.npz files)

  • Profiler log

Setup:

  1. Set up the benchmarking PVC:

export NAMESPACE=your-namespace
deploy/utils/setup_benchmarking_resources.sh
  1. Add outputPVC to your DGDR’s profilingConfig:

spec:
  profilingConfig:
    outputPVC: "dynamo-pvc"
    config:
      # ... rest of config
  1. After profiling completes, access results:

kubectl apply -f deploy/utils/manifests/pvc-access-pod.yaml -n $NAMESPACE
kubectl wait --for=condition=Ready pod/pvc-access-pod -n $NAMESPACE --timeout=60s
kubectl cp $NAMESPACE/pvc-access-pod:/data ./profiling-results
kubectl delete pod pvc-access-pod -n $NAMESPACE

Troubleshooting#

Quick Diagnostics#

# Check DGDR status and events
kubectl describe dgdr sla-aic -n $NAMESPACE

# Check operator logs
kubectl logs -n $NAMESPACE -l app.kubernetes.io/name=dynamo-operator --tail=100

# Check profiling job logs
kubectl logs -l job-name=profile-sla-aic -n $NAMESPACE

Common Issues#

Issue

Quick Fix

DGDR stuck in Pending

Check GPU availability: kubectl get nodes -o jsonpath='{.items[*].status.allocatable.nvidia\.com/gpu}'

Image pull errors

Verify secret exists: kubectl get secret nvcr-imagepullsecret -n $NAMESPACE

Profiling fails

Check job logs: kubectl logs -l job-name=profile-sla-aic -n $NAMESPACE

SLA cannot be met

Relax TTFT/ITL targets or add more GPUs

DGD not deployed

Verify autoApply: true in DGDR spec

Note

For comprehensive troubleshooting including AI Configurator constraints, performance debugging, and backend-specific issues, see SLA-Driven Profiling Troubleshooting.

Configuration Reference#

For comprehensive documentation of all DGDR configuration options, see the DGDR Configuration Reference.

This includes detailed explanations of:

  • SLA Configuration: ISL, OSL, TTFT, ITL with use cases and trade-offs

  • Hardware Configuration: GPU constraints and search space control

  • Sweep Configuration: Profiling behavior and interpolation settings

  • AI Configurator Configuration: System types, model mappings, backend versions

  • Planner Configuration: Autoscaling and adjustment parameters

  • Complete Examples: Full DGDRs for online, offline (AIC), and MoE profiling