Virtual GPU Software R430 for VMware vSphere Release Notes

Release information for all users of NVIDIA virtual GPU software and hardware on VMware vSphere.

1. Release Notes

These Release Notes summarize current status, information on validated platforms, and known issues with NVIDIA vGPU software and associated hardware on VMware vSphere.

The releases in this release family of NVIDIA vGPU software include the software listed in the following table:

Software 9.0 9.1
NVIDIA Virtual GPU Manager for the VMware vSphere releases listed in Hypervisor Software Releases 430.27 430.46
NVIDIA Windows driver 431.02 431.79
NVIDIA Linux driver 430.30 430.46
CAUTION:

If you install the wrong NVIDIA vGPU software packages for the version of VMware vSphere you are using, NVIDIA Virtual GPU Manager will fail to load.

The releases of the vGPU Manager and guest VM drivers that you install must be compatible. Different versions of the vGPU Manager and guest VM driver from within the same main release branch can be used together. For example, you can use the vGPU Manager from release 9.1 with guest VM drivers from release 9.0. However, versions of the vGPU Manager and guest VM driver from different main release branches cannot be used together. For example, you cannot use the vGPU Manager from release 9.1 with guest VM drivers from release 7.2.

See VM running older NVIDIA vGPU drivers fails to initialize vGPU when booted.

This requirement does not apply to the NVIDIA vGPU software license sever. All releases of NVIDIA vGPU software are compatible with all releases of the license server.

1.1. Updates in Release 9.0

New Features in Release 9.0

  • NVIDIA vComputeServer vGPUs for artificial intelligence, deep learning, and high-performance computing workloads
  • Support for multiple vGPUs in a single VM (requires release 6.7 Update 3)
  • Error correcting code (ECC) memory support
  • Page retirement support
  • Configurable times slices for equal share schedulers and fixed share schedulers
  • New configuration parameter to specify host ID of a licensed client
  • Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 9.0

  • Support for Windows 10 May 2019 Update (1903) as a guest OS
  • Support for the following OS releases as a guest OS:
    • Red Hat Enterprise Linux 8.0
    • CentOS 8.0
  • Support for VMware Horizon 7.9

Feature Support Withdrawn in Release 9.0

  • VMware vSphere ESXi 6.0 is no longer supported.

1.2. Updates in Release 9.1

New Features in Release 9.1

  • Support for NVIDIA vComputeServer vGPUs on the following GPUs:
    • Quadro RTX 6000
    • Quadro RTX 8000
  • Security updates
  • Miscellaneous bug fixes

2. Validated Platforms

This release family of NVIDIA vGPU software provides support for several NVIDIA GPUs on validated server hardware platforms, VMware vSphere hypervisor software versions, and guest operating systems. It also supports the version of NVIDIA CUDA Toolkit that is compatible with R430 drivers.

2.1. Supported NVIDIA GPUs and Validated Server Platforms

This release of NVIDIA vGPU software provides support for the following NVIDIA GPUs on VMware vSphere, running on validated server hardware platforms:

  • GPUs based on the NVIDIA Maxwell™ graphic architecture:
    • Tesla M6 (vComputeServer is not supported.)
    • Tesla M10 (vComputeServer is not supported.)
    • Tesla M60 (vComputeServer is not supported.)
  • GPUs based on the NVIDIA Pascal™ architecture:
    • Tesla P4
    • Tesla P6
    • Tesla P40
    • Tesla P100 PCIe 16 GB (vSGA, vMotion with vGPU, and suspend-resume with vGPU are not supported.)
    • Tesla P100 SXM2 16 GB (vSGA, vMotion with vGPU, and suspend-resume with vGPU are not supported.)
    • Tesla P100 PCIe 12GB (vSGA, vMotion with vGPU, and suspend-resume with vGPU are not supported.)
  • GPUs based on the NVIDIA Volta architecture:
    • Tesla V100 SXM2 (vSGA is not supported.)
    • Tesla V100 SXM2 32GB (vSGA is not supported.)
    • Tesla V100 PCIe (vSGA is not supported.)
    • Tesla V100 PCIe 32GB (vSGA is not supported.)
    • Tesla V100 FHHL (vSGA is not supported.)
  • GPUs based on the NVIDIA Turing™ architecture:
    • Tesla T4
    • Quadro RTX 6000 in displayless mode (GRID Virtual PC and GRID Virtual Applications are not supported. vComputeServer is supported only since release 9.1.)
    • Quadro RTX 8000 in displayless mode (GRID Virtual PC and GRID Virtual Applications are not supported. vComputeServer is supported only since release 9.1.)

In displayless mode, local physical display connectors are disabled.

For a list of validated server platforms, refer to NVIDIA GRID Certified Servers.

Note:

Tesla M60 and M6 GPUs support compute mode and graphics mode. NVIDIA vGPU requires GPUs that support both modes to operate in graphics mode.

Recent Tesla M60 GPUs and M6 GPUs are supplied in graphics mode. However, your GPU might be in compute mode if it is an older Tesla M60 GPU or M6 GPU, or if its mode has previously been changed.

To configure the mode of Tesla M60 and M6 GPUs, use the gpumodeswitch tool provided with NVIDIA vGPU software releases.

Even in compute mode, Tesla M60 and M6 GPUs do not support NVIDIA vComputeServer vGPU types.

Requirements for Using C-Series vComputeServer vGPUs

Because C-Series vComputeServer vGPUs have large BAR memory settings, using these vGPUs has some restrictions on VMware ESXi:

Requirements for Using vGPU on GPUs Requiring 64 GB of MMIO Space with Large-Memory VMs

Any GPU that has 16 GB or more of frame buffer requires 64 GB of MMIO space. When a vGPU on a GPU that requires 64 GB of MMIO space is assigned to a VM with 32 GB or more of memory on ESXi 6.0 Update 3 and later, or ESXi 6.5 and later updates, the VM’s MMIO space must be increased to 64 GB. For more information, see VMware Knowledge Base Article: VMware vSphere VMDirectPath I/O: Requirements for Platforms and Devices (2142307).

With ESXi 6.7, no extra configuration is needed.

The following GPUs require 64 GB of MMIO space:

  • Tesla P6
  • Tesla P40
  • Tesla P100 (all variants)
  • Tesla V100 (all variants)

Requirements for Using GPUs Based on the Pascal and Volta Architectures in Pass-Through Mode

  • The Tesla V100, Tesla P100, and Tesla P6 GPUs require 32 GB of MMIO space in pass-through mode.
  • The Tesla P40 GPU requires 64 GB of MMIO space in pass-through mode.
  • Pass through of GPUs with large BAR memory settings has some restrictions on VMware ESXi:

2.2. Hypervisor Software Releases

Supported VMware vSphere Hypervisor (ESXi) Releases

This release is supported on the VMware vSphere Hypervisor (ESXi) releases listed in the table.

Note:

Support for NVIDIA vGPU software requires the Enterprise Plus Edition of VMware vSphere Hypervisor (ESXi). For details, see Compare VMware vSphere Editions (PDF).

Updates to a base release of VMware vSphere Hypervisor (ESXi) are compatible with the base release and can also be used with this version of NVIDIA vGPU software unless expressly stated otherwise.

Software Release Supported Notes
VMware vSphere Hypervisor (ESXi) 6.7 6.7 and compatible updates

All NVIDIA GPUs that support NVIDIA vGPU software are supported.

Starting with release 6.7 U3, the assignment of multiple vGPUs to a single VM is supported.

Starting with release 6.7 U1, vMotion with vGPU and suspend and resume with vGPU are supported on suitable GPUs as listed in Supported NVIDIA GPUs and Validated Server Platforms.

Release 6.7 supports only suspend and resume with vGPU. vMotion with vGPU is not supported on release 6.7.

VMware vSphere Hypervisor (ESXi) 6.5 6.5 and compatible updates

Requires VMware vSphere Hypervisor (ESXi) 6.5 patch EP3 (ESXi650-201811002, build 10884925) or later from VMware

All NVIDIA GPUs that support NVIDIA vGPU software are supported.

The following features of NVIDIA vGPU software are not supported.

  • Assignment of multiple vGPUs to a single VM
  • Suspend-resume with vGPU
  • vMotion with vGPU

Supported Management Software and Virtual Desktop Software Releases

This release supports the management software and virtual desktop software releases listed in the table.

Note: Updates to a base release of VMware Horizon and VMware vCenter Server are compatible with the base release and can also be used with this version of NVIDIA vGPU software unless expressly stated otherwise.
Software Releases Supported
VMware Horizon

7.9 and compatible 7.9.x updates

7.8 and compatible 7.8.x updates

7.7 and compatible 7.7.x updates

7.6 and compatible 7.6.x updates

7.5 and compatible 7.5.x updates

7.4 and compatible 7.4.x updates

7.3 and compatible 7.3.x updates

7.2 and compatible 7.2.x updates

7.1 and compatible 7.1.x updates

7.0 and compatible 7.0.x updates

6.2 and compatible 6.2.x updates

VMware vCenter Server

6.7 and compatible updates

6.5 and compatible updates

6.0 and compatible updates

2.3. Guest OS Support

NVIDIA vGPU software supports several Windows releases and Linux distributions as a guest OS. The supported guest operating systems depend on the hypervisor software version.

Note:

Use only a guest OS release that is listed as supported by NVIDIA vGPU software with your virtualization software. To be listed as supported, a guest OS release must be supported not only by NVIDIA vGPU software, but also by your virtualization software. NVIDIA cannot support guest OS releases that your virtualization software does not support.

NVIDIA vGPU software supports only 64-bit guest operating systems. No 32-bit guest operating systems are supported.

Windows Guest OS Support

NVIDIA vGPU software supports only the 64-bit Windows releases listed in the table as a guest OS on VMware vSphere. The releases of VMware vSphere for which a Windows release is supported depend on whether NVIDIA vGPU or pass-through GPU is used.

Note:

If a specific release, even an update release, is not listed, it’s not supported.

VMware vMotion with vGPU and suspend-resume with vGPU are supported on supported Windows guest OS releases

Guest OS NVIDIA vGPU - VMware vSphere Releases Pass-Through GPU - VMware vSphere Releases
Windows Server 2019

6.7, 6.5 update 2, 6.5 update 1

6.7, 6.5 update 2, 6.5 update 1

Windows Server 2016 1709, 1607

6.7, 6.5

6.7, 6.5

Windows Server 2012 R2

6.7, 6.5

6.7, 6.5

Windows Server 2008 R2

6.7, 6.5

6.7, 6.5

Windows 10:
  • May 2019 Update (1903)
  • October 2018 Update (1809)
  • Spring Creators Update (1803)
  • Fall Creators Update (1709)
  • Creators Update (1703)
  • Anniversary Update (1607)
  • November Update (1511)
  • RTM (1507)

6.7, 6.5

6.7, 6.5

Windows 8.1 Update

6.7, 6.5

6.7, 6.5

Windows 8.1

6.7, 6.5

-

Windows 8

6.7, 6.5

-

Windows 7

6.7, 6.5

6.7, 6.5

2.3.2. Linux Guest OS Support

NVIDIA vGPU software supports only the Linux distributions listed in the table as a guest OS on VMware vSphere. The releases of VMware vSphere for which a Linux release is supported depend on whether NVIDIA vGPU or pass-through GPU is used.

Note:

If a specific release, even an update release, is not listed, it’s not supported.

VMware vMotion with vGPU and suspend-resume with vGPU are supported on supported Linux guest OS releases

Guest OS NVIDIA vGPU - VMware vSphere Releases Pass-Through GPU - VMware vSphere Releases
Red Hat Enterprise Linux 8.0

6.7, 6.5 update 3

6.7, 6.5 update 3

CentOS 8.0

6.7, 6.5 update 3

6.7, 6.5 update 3

Red Hat Enterprise Linux 7.0-7.6 and later compatible 7.x versions

6.7, 6.5

6.7, 6.5

CentOS 7.0-7.6 and later compatible 7.x versions

6.7, 6.5

6.7, 6.5

Red Hat Enterprise Linux 6.6 and later compatible 6.x versions

6.7, 6.5

6.7, 6.5

CentOS 6.6 and later compatible 6.x versions

6.7, 6.5

6.7, 6.5

Ubuntu 18.04 LTS

6.7, 6.5

6.7, 6.5

Ubuntu 16.04 LTS

6.7, 6.5

6.7, 6.5

Ubuntu 14.04 LTS

6.7, 6.5

6.7, 6.5

SUSE Linux Enterprise Server 12 SP3

6.7, 6.5

6.7, 6.5

2.4. NVIDIA CUDA Toolkit Version Support

The releases in this release family of NVIDIA vGPU software support NVIDIA CUDA Toolkit 10.1 Update 1.

For more information about NVIDIA CUDA Toolkit, see CUDA Toolkit 10.1 Documentation.

Note:

If you are using NVIDIA vGPU software with CUDA on Linux, avoid conflicting installation methods by installing CUDA from a distribution-independent runfile package. Do not install CUDA from distribution-specific RPM or Deb package.

To ensure that the NVIDIA vGPU software graphics driver is not overwritten when CUDA is installed, deselect the CUDA driver when selecting the CUDA components to install.

For more information, see NVIDIA CUDA Installation Guide for Linux.

2.5. vGPU Migration Support

vGPU migration, which includes vMotion and suspend-resume, is supported only on a subset of supported GPUs, VMware vSphere Hypervisor (ESXi) releases, and guest operating systems.

Supported GPUs:
  • Tesla M6
  • Tesla M10
  • Tesla M60
  • Tesla P4
  • Tesla P6
  • Tesla P40
  • Tesla V100 SXM2
  • Tesla V100 SXM2 32GB
  • Tesla V100 PCIe
  • Tesla V100 PCIe 32GB
  • Tesla V100 FHHL
  • Tesla T4
  • Quadro RTX 6000
  • Quadro RTX 8000
Supported VMware vSphere Hypervisor (ESXi) releases:
  • Release 6.7 U1 and compatible updates support vMotion with vGPU and suspend-resume with vGPU.
  • Release 6.7 supports only suspend-resume with vGPU.
  • Releases earlier than 6.7 do not support any form of vGPU migration.

Supported guest OS releases: Windows and Linux.

2.6. Multiple vGPU Support

To support applications and workloads that are compute or graphics intensive, multiple vGPUs can be added to a single VM. The assignment of more than one vGPU to a VM is supported only on a subset of vGPUs and VMware vSphere Hypervisor (ESXi) releases.

Supported vGPUs

Only Q-series and C-series vGPUs that are allocated all of the physical GPU's frame buffer are supported.

GPU Architecture Board vGPU
Turing Tesla T4 T4-16Q
T4-16C
Quadro RTX 6000 RTX6000-24Q
Quadro RTX 8000 RTX8000-48Q
Volta Tesla V100 SXM2 32GB V100DX-32Q
V100D-32C
Tesla V100 PCIe 32GB V100D-32Q
V100D-32C
Tesla V100 SXM2 V100X-16Q
V100X-16C
Tesla V100 PCIe V100-16Q
V100-16C
Tesla V100 FHHL V100L-16Q
V100L-16C
Pascal Tesla P100 SXM2 P100X-16Q
P100X-16C
Tesla P100 PCIe 16GB P100-16Q
P100-16C
Tesla P100 PCIe 12GB P100C-12Q
P100C-12C
Tesla P40 P40-24Q
P40-24C
Tesla P6 P6-16Q
P6-16C
Tesla P4 P4-8Q
P4-8C
Maxwell Tesla M60 M60-8Q
Tesla M10 M10-8Q
Tesla M6 M6-8Q

Maximum vGPUs per VM

NVIDIA vGPU software supports up to a maximum of four vGPUs per VM on VMware vSphere Hypervisor (ESXi).

Supported Hypervisor Releases

VMware vSphere Hypervisor (ESXi) release 6.7 U3 and later compatible updates only.

2.7. Peer-to-Peer CUDA Transfers over NVLink Support

Peer-to-peer CUDA transfers enable device memory between vGPUs on different GPUs that are assigned to the same VM to be accessed from within the CUDA kernels. NVLink is a high-bandwidth interconnect that enables fast communication between such vGPUs. Peer-to-Peer CUDA Transfers over NVLink is supported only on a subset of vGPUs, VMware vSphere Hypervisor (ESXi) releases, and guest OS releases.

Supported vGPUs

Only Q-series and C-series vGPUs that are allocated all of the physical GPU's frame buffer on physical GPUs that support NVLink are supported.

GPU Architecture Board vGPU
Turing Quadro RTX 6000 RTX6000-24Q
Quadro RTX 8000 RTX8000-48Q
Volta Tesla V100 SXM2 32GB V100DX-32Q
V100DX-32C
Tesla V100 SXM2 V100X-16Q
V100X-16C
Pascal Tesla P100 SXM2 P100X-16Q
P100X-16C

Supported Hypervisor Releases

Peer-to-Peer CUDA Transfers over NVLink are supported on all hypervisor releases that support the assignment of more than one vGPU to a VM. For details, see Multiple vGPU Support.

Supported Guest OS Releases

Linux only. Peer-to-Peer CUDA Transfers over NVLink are not supported on Windows.

Limitations

  • Only direct connections are supported. NVSwitch is not supported.
  • PCIe is not supported.
  • SLI is not supported.

3. Known Product Limitations

Known product limitations for this release of NVIDIA vGPU software are described in the following sections.

3.1. Issues may occur with graphics-intensive OpenCL applications on vGPU types with limited frame buffer

Description

Issues may occur when graphics-intensive OpenCL applications are used with vGPU types that have limited frame buffer. These issues occur when the applications demand more frame buffer than is allocated to the vGPU.

For example, these issues may occur with the Adobe Photoshop and LuxMark OpenCL Benchmark applications:

  • When the image resolution and size are changed in Adobe Photoshop, a program error may occur or Photoshop may display a message about a problem with the graphics hardware and a suggestion to disable OpenCL.
  • When the LuxMark OpenCL Benchmark application is run, XID error 31 may occur.

Workaround

For graphics-intensive OpenCL applications, use a vGPU type with more frame buffer.

3.3. vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on Windows 10

Description

To reduce the possibility of memory exhaustion, vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on a Windows 10 guest OS.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

  • Tesla M6-0B, M6-0Q
  • Tesla M10-0B, M10-0Q
  • Tesla M60-0B, M60-0Q

Workaround

Use a profile that supports more than 1 virtual display head and has at least 1 Gbyte of frame buffer.

3.4. NVENC requires at least 1 Gbyte of frame buffer

Description

Using the frame buffer for the NVIDIA hardware-based H.264/HEVC video encoder (NVENC) may cause memory exhaustion with vGPU profiles that have 512 Mbytes or less of frame buffer. To reduce the possibility of memory exhaustion, NVENC is disabled on profiles that have 512 Mbytes or less of frame buffer. Application GPU acceleration remains fully supported and available for all profiles, including profiles with 512 MBytes or less of frame buffer. NVENC support from both Citrix and VMware is a recent feature and, if you are using an older version, you should experience no change in functionality.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

  • Tesla M6-0B, M6-0Q
  • Tesla M10-0B, M10-0Q
  • Tesla M60-0B, M60-0Q

Workaround

If you require NVENC to be enabled, use a profile that has at least 1 Gbyte of frame buffer.

3.5. VM failures or crashes on servers with 1 TB or more of system memory

Description

Support for vGPU and vSGA is limited to servers with less than 1 TB of system memory. On servers with 1 TB or more of system memory, VM failures or crashes may occur. For example, when Citrix Virtual Apps and Desktops is used with a Windows 7 guest OS, a blue screen crash may occur. However, support for vDGA is not affected by this limitation.

This limitation applies only to systems with supported GPUs based on the Maxwell architecture: Tesla M6, Tesla M10, and Tesla M60.

Resolution

  1. Limit the amount of system memory on the server to 1 TB minus 16 GB by setting memmapMaxRAMMB to 1032192, which is equal to 1048576 minus 16384.

  2. Reboot the server.

If the problem persists, contact your server vendor for the recommended system memory configuration with NVIDIA GPUs.

3.6. VM running older NVIDIA vGPU drivers fails to initialize vGPU when booted

Description

A VM running a version of the NVIDIA guest VM drivers from a previous main release branch, for example release 4.4, will fail to initialize vGPU when booted on a VMware vSphere platform running the current release of Virtual GPU Manager.

In this scenario, the VM boots in standard VGA mode with reduced resolution and color depth. The NVIDIA virtual GPU is present in Windows Device Manager but displays a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

Depending on the versions of drivers in use, the VMware vSphere VM’s log file reports one of the following errors:

  • A version mismatch between guest and host drivers:
    vthread-10| E105: vmiop_log: Guest VGX version(2.0) and Host VGX version(2.1) do not match
  • A signature mismatch:
    vthread-10| E105: vmiop_log: VGPU message signature mismatch.

Resolution

Install the current NVIDIA guest VM driver in the VM.

3.7. Single vGPU benchmark scores are lower than pass-through GPU

Description

A single vGPU configured on a physical GPU produces lower benchmark scores than the physical GPU run in pass-through mode.

Aside from performance differences that may be attributed to a vGPU’s smaller frame buffer size, vGPU incorporates a performance balancing feature known as Frame Rate Limiter (FRL). On vGPUs that use the best-effort scheduler, FRL is enabled. On vGPUs that use the fixed share or equal share scheduler, FRL is disabled.

FRL is used to ensure balanced performance across multiple vGPUs that are resident on the same physical GPU. The FRL setting is designed to give good interactive remote graphics experience but may reduce scores in benchmarks that depend on measuring frame rendering rates, as compared to the same benchmarks running on a pass-through GPU.

Resolution

FRL is controlled by an internal vGPU setting. On vGPUs that use the best-effort scheduler, NVIDIA does not validate vGPU with FRL disabled, but for validation of benchmark performance, FRL can be temporarily disabled by adding the configuration parameter pciPassthru0.cfg.frame_rate_limiter in the VM’s advanced configuration options.

Note: This setting can only be changed when the VM is powered off.
  1. Select Edit Settings.
  2. In Edit Settings window, select the VM Options tab.
  3. From the Advanced drop-down list, select Edit Configuration.
  4. In the Configuration Parameters dialog box, click Add Row.
  5. In the Name field, type the parameter name pciPassthru0.cfg.frame_rate_limiter, in the Value field type 0, and click OK.

    Screen capture showing a dialog box that contains advanced VM configuration options

With this setting in place, the VM’s vGPU will run without any frame rate limit. The FRL can be reverted back to its default setting by setting pciPassthru0.cfg.frame_rate_limiter to 1 or by removing the parameter from the advanced settings.

3.8. VMs configured with large memory fail to initialize vGPU when booted

Description

When starting multiple VMs configured with large amounts of RAM (typically more than 32GB per VM), a VM may fail to initialize vGPU. In this scenario, the VM boots in VMware SVGA mode and doesn’t load the NVIDIA driver. The NVIDIA vGPU software GPU is present in Windows Device Manager but displays a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

The VMware vSphere VM’s log file contains these error messages:

vthread10|E105: NVOS status 0x29
vthread10|E105: Assertion Failed at 0x7620fd4b:179
vthread10|E105: 8 frames returned by backtrace
 ...
vthread10|E105: VGPU message 12 failed, result code: 0x29
...
vthread10|E105: NVOS status 0x8
vthread10|E105: Assertion Failed at 0x7620c8df:280
vthread10|E105: 8 frames returned by backtrace
...
vthread10|E105: VGPU message 26 failed, result code: 0x8

Resolution

vGPU reserves a portion of the VM’s framebuffer for use in GPU mapping of VM system memory. The reservation is sufficient to support up to 32GB of system memory, and may be increased to accommodate up to 64GB by adding the configuration parameter pciPassthru0.cfg.enable_large_sys_mem in the VM’s advanced configuration options

Note: This setting can only be changed when the VM is powered off.
  1. Select Edit Settings.
  2. In Edit Settings window, select the VM Options tab.
  3. From the Advanced drop-down list, select Edit Configuration.
  4. In the Configuration Parameters dialog box, click Add Row.
  5. In the Name field, type the parameter name pciPassthru0.cfg.enable_large_sys_mem, in the Value field type 1, and click OK.

With this setting in place, less GPU framebuffer is available to applications running in the VM. To accommodate system memory larger than 64GB, the reservation can be further increased by adding pciPassthru0.cfg.extra_fb_reservation in the VM’s advanced configuration options, and setting its value to the desired reservation size in megabytes. The default value of 64M is sufficient to support 64 GB of RAM. We recommend adding 2 M of reservation for each additional 1 GB of system memory. For example, to support 96 GB of RAM, set pciPassthru0.cfg.extra_fb_reservation to 128.

The reservation can be reverted back to its default setting by setting pciPassthru0.cfg.enable_large_sys_mem to 0, or by removing the parameter from the advanced settings.

4. Resolved Issues

Only resolved issues that have been previously noted as known issues or had a noticeable user impact are listed. The summary and description for each resolved issue indicate the effect of the issue on NVIDIA vGPU software before the issue was resolved.

Issues Resolved in Release 9.0

Bug ID Summary and Description
-

Virtual GPU fails to start if ECC is enabled

NVIDIA vGPU does not support error correcting code (ECC) memory. If ECC memory is enabled, NVIDIA vGPU fails to start.

Starting with NVIDIA vGPU software release 9.0, NVIDIA vGPU supports ECC memory on GPUs and hypervisor software versions that support ECC.

200269717

On Tesla P40, P6, and P4 GPUs, the default ECC setting prevents NVIDIA vGPU from starting

Starting with NVIDIA vGPU software release 9.0, NVIDIA vGPU supports ECC memory on GPUs and hypervisor software versions that support ECC.

2285306

Cloned VMs configured with a vGPU type different than the type in the master image fail to start

Cloned VMs configured with a vGPU type different than the type in the master image fail to start.

When a Windows 10 VM is booted, the VM becomes stuck in a loop and alternately displays Getting devices ready: 50% and Preparation in progress.

Issues Resolved in Release 9.1

Bug ID Summary and Description
200534988

Error XID 47 followed by multiple XID 32 errors

After disconnecting Citrix Virtual Apps and Desktops and clicking the power button in the VM, error XID 47 occurs followed by multiple XID 32 errors. When these errors occur, the hypervisor host becomes unusable.

200538428

9.0 Only: Hypervisor host with vSGA configured crashes when booted

When VMware vSphere VMs are configured with vSGA, a purple screen crash occurs when the ESXi hypervisor host is booted. This issue occurs only if VMs are configured with vSGA, 3D settings are enabled on the VMs, and the NVIDIA vGPU software graphics driver is installed in the VMs. If VMs are configured with NVIDIA vGPU, 3D settings are disabled on the VMs, or the NVIDIA vGPU software graphics driver is not installed in the VMs, this issue does not occur.

200526633

9.0 only: VM crashes after the volatile ECC error count is reset

After the command nvidia-smi -p 0 is run from a guest VM to reset the volatile ECC error count, the VM crashes.

200525006

9.0 only: Incorrect ECC error counts are reported for vGPUs on some GPUs

Incorrect ECC error counts are reported for vGPUs on some GPUs when the command nvidia-smi -q is run from a guest VM.

200524555

9.0 only: On Linux VMs, the license directory is not deleted when the guest driver is uninstalled

On Linux guest VMs, the license directory /etc/nvidia/license is not deleted when the NVIDIA vGPU software graphics driver is uninstalled.

200524348

9.0 only: nvidia-smi shows the incorrect ECC state for a vGPU

nvidia-smi vgpu -q shows the incorrect ECC state of a vGPU when ECC is enabled on the physical GPU but disabled on the vGPU from the vGPU VM. This issue occurs because data for the physical GPU host is not being reset and is being reused even after reboot.

200522255

9.0 only: No vComputeServer option available in NVIDIA X Server Settings

The vComputeServer option is missing from the Manage License section in the NVIDIA X Server Settings window.

200434909

9.0 only: Users' view sessions may become corrupted after migration

When a VM configured with vGPU under heavy load is migrated to another host, users' view sessions may become corrupted after the migration.

5. Known Issues

5.1. Migrating a VM configured with NVIDIA vGPU software release 9.1 to a host running release 9.0 fails

Description

This issue occurs only with the following combination of releases of guest VM graphics driver, vGPU manager on the source host, and vGPU manager on the destination host:

Guest VM Graphics Driver Source vGPU Manager Destination vGPU Manager
9.1 9.1 9.0

Workaround

Note: Tesla M10 GPUs do not support this workaround. Even after applying this workaround to a system on which this issue occurs, vGPU migration with Tesla M10 GPUs fails with the following error:
Unexpected migration data block encountered.
  1. On the host that is running vGPU Manager 9.1, set the registry key RMSetVGPUVersionMax to 0x30001.
  2. Start the VM.
  3. Confirm that the vGPU version in the log files is 0x30001.
    2019-09-10T10:19:05.420Z| vthread-2142280| I125: vmiop_log: vGPU version: 0x30001

The VM can now be migrated.

Status

Not a bug

Ref. #

200533827

5.2. ECC memory with NVIDIA vGPU is not supported on Tesla M60 and Tesla M6

Description

Error-correcting code (ECC) memory with NVIDIA vGPU is not supported on Tesla M60 and Tesla M6 GPUs. The effect of starting NVIDIA vGPU when it is configured on a Tesla M60 or Tesla M6 GPU on which ECC memory is enabled depends on your NVIDIA vGPU software release.
  • 9.0 only: The hypervisor host fails.
  • Since 9.1: The VM fails to start.

Workaround

Ensure that ECC memory is disabled on Tesla M60 and Tesla M6 GPUs. For more information, see Virtual GPU fails to start if ECC is enabled.

Status

Open

5.3. Virtual GPU fails to start if ECC is enabled

Description

Tesla M60, Tesla M6, and GPUs based on the Pascal GPU architecture, for example Tesla P100 or Tesla P4, support error correcting code (ECC) memory for improved data integrity. Tesla M60 and M6 GPUs in graphics mode are supplied with ECC memory disabled by default, but it may subsequently be enabled using nvidia-smi. GPUs based on the Pascal GPU architecture are supplied with ECC memory enabled.

However, NVIDIA vGPU does not support ECC memory with the following GPUs:

  • Tesla M60 GPUs
  • Tesla M6 GPUs

If ECC memory is enabled and your GPU does not support ECC, NVIDIA vGPU fails to start.

The following error is logged in the VMware vSphere host’s log file:

vthread10|E105: Initialization: VGX not supported with ECC Enabled.

Resolution

If you are using Tesla M60 or Tesla M6 GPUs, ensure that ECC is disabled on all GPUs.

Before you begin, ensure that NVIDIA Virtual GPU Manager is installed on your hypervisor.

  1. Use nvidia-smi to list the status of all GPUs, and check for ECC noted as enabled on GPUs.
    # nvidia-smi -q
    
    ==============NVSMI LOG==============
    
    Timestamp                           : Tue Dec 19 18:36:45 2017
    Driver Version                      : 384.99
    
    Attached GPUs                       : 1
    GPU 0000:02:00.0
    
    [...]
    
        Ecc Mode
            Current                     : Enabled
            Pending                     : Enabled
    
    [...]
  2. Change the ECC status to off on each GPU for which ECC is enabled.
    • If you want to change the ECC status to off for all GPUs on your host machine, run this command:
      # nvidia-smi -e 0
    • If you want to change the ECC status to off for a specific GPU, run this command:
      # nvidia-smi -i id -e 0

      id is the index of the GPU as reported by nvidia-smi.

      This example disables ECC for the GPU with index 0000:02:00.0.

      # nvidia-smi -i 0000:02:00.0 -e 0
  3. Reboot the host.
  4. Confirm that ECC is now disabled for the GPU.
    # nvidia-smi -q
    
    ==============NVSMI LOG==============
    
    Timestamp                           : Tue Dec 19 18:37:53 2017
    Driver Version                      : 384.99
    
    Attached GPUs                       : 1
    GPU 0000:02:00.0
    [...]
    
        Ecc Mode
            Current                     : Disabled
            Pending                     : Disabled
    
    [...]

If you later need to enable ECC on your GPUs, run one of the following commands:

  • If you want to change the ECC status to on for all GPUs on your host machine, run this command:
    # nvidia-smi -e 1
  • If you want to change the ECC status to on for a specific GPU, run this command:
    # nvidia-smi -i id -e 1

    id is the index of the GPU as reported by nvidia-smi.

    This example enables ECC for the GPU with index 0000:02:00.0.

    # nvidia-smi -i 0000:02:00.0 -e 1

After changing the ECC status to on, reboot the host.

5.4. 9.0 Only: Hypervisor host with vSGA configured crashes when booted

Description

When VMware vSphere VMs are configured with vSGA, a purple screen crash occurs when the ESXi hypervisor host is booted. This issue occurs only if VMs are configured with vSGA, 3D settings are enabled on the VMs, and the NVIDIA vGPU software graphics driver is installed in the VMs. If VMs are configured with NVIDIA vGPU, 3D settings are disabled on the VMs, or the NVIDIA vGPU software graphics driver is not installed in the VMs, this issue does not occur.

When the purple screen crash occurs, the hypervisor host displays a stack trace similar to the following example.

VMware ESXi 6.7.0 [Releasebuild-13981272 x86_641
IOMMU Fault detected for 0000:07:00.0 (vmgfx2/nvidia) IOaddr: 0x6675847000 Mask: 0x5 Domain: 0x43066aebd1d0.
NOTE: Backtrace likely does not yield the culprit.
cr0=0x8001003d cr2=0x21icff9ffe0 cr3=00x7bab9000 cr4=0x10216c
*PCPU15:2097347/HELPER_MISC_QUEUE
PCPU  0: VSVVVVVVVSUUSVVSSSSUVVVVVVVUVSVSVSUUVVVSVSUSSVUVVSVSVVSSV
Code start: 0x416803ae00000 VMK uptime: 37:23:27:11.564
0x451a8619bd56: (0x41803af0ba15]PanicvPanicInt@vmkernel#tnover+0x439 stack: 0x0
0x451a8619bdf6: (0x41803af0bc48]Panic_NoSave@vmkernelfnover+00x4d stack: 0x451a8619be50
0x451a8619be56: (0x41803aef38d5]IOMMUProcessF au 1ts@vmkernel#tnover +0x38e stack: 0x5
0x451a8619bf30: (0x41803aeeb03a]HelperQueveFunc@vmkerne1#nover+0x157 stack: 0x4306fc6600b8
0x451a8619bfeD: (0x41803b10e322]CpuSched_StartWorld@vmkernel#nover+0x77 stack: 0x0
base fs=0x@ gs=0x418043c00000 Kgs=0x0
Coredump to disk. Slot 1 of 1 on device mpx.vmhba32:C0:T0:L0:9.
VASpace (08/14)

Version

NVIDIA vGPU software 9.0 only

Status

Resolved in NVIDIA vGPU software 9.1

Ref. #

200538428

5.5. VMware vCenter shows GPUs with no available GPU memory

Description

VMware vCenter shows some physical GPUs as having 0.0 B of available GPU memory. VMs that have been assigned vGPUs on the affected physical GPUs cannot be booted. The nvidia-smi command shows the same physical GPUs as having some GPU memory available.

Workaround

Stop and restart the Xorg service and nv-hostengine on the ESXi host.

  1. Stop all running VM instances on the host.

  2. Stop the Xorg service.

    [root@esxi:~] /etc/init.d/xorg stop
  3. Stop nv-hostengine.

    [root@esxi:~] nv-hostengine -t
  4. Wait for 1 second to allow nv-hostengine to stop.

  5. Start nv-hostengine.

    [root@esxi:~] nv-hostengine -d
  6. Start the Xorg service.

    [root@esxi:~] /etc/init.d/xorg start

Status

Not an NVIDIA bug

A fix is available from VMware in VMware vSphere ESXi 6.7 U3. For information about the availability of fixes for other releases of VMware vSphere ESXi, contact VMware.

Ref. #

2644794

5.6. RAPIDS cuDF merge fails on NVIDIA vGPU

Description

The merge function of the RAPIDS cuDF GPU data frame library fails on NVIDIA vGPU. This function fails because RAPIDS uses the Unified Memory feature of CUDA, which NVIDIA vGPU does not support.

Status

Open

Ref. #

2642134

5.7. 9.0 only: Users' view sessions may become corrupted after migration

Description

When a VM configured with vGPU under heavy load is migrated to another host, users' view sessions may become corrupted after the migration.

Workaround

Restart the VM.

Status

Resolved in NVIDIA vGPU software 9.1

Ref. #

200434909

5.8. Users' sessions may freeze during vMotion migration of VMs configured with vGPU

Description

When vMotion is used to migrate a VM configured with vGPU to another host, users' sessions may freeze for up to several seconds during the migration.

These factors may increase the length of time for which a session freezes:

  • Continuous use of the frame buffer by the workload, which typically occurs with workloads such as video streaming
  • A large amount of vGPU frame buffer
  • A large amount of system memory
  • Limited network bandwidth

Workaround

Administrators can mitigate the effects on end users by avoiding migration of VMs configured with vGPU during business hours or warning end users that migration is about to start and that they may experience session freezes.

End users experiencing this issue must wait for their sessions to resume when the migration is complete.

Status

Open

Ref. #

2569578

5.9. Migration of VMs configured with vGPU stops before the migration is complete

Description

When a VM configured with vGPU is migrated to another host, the migration stops before it is complete. After the migration stops, the VM is no longer accessible.

This issue occurs if the ECC memory configuration (enabled or disabled) on the source and destination hosts are different. The ECC memory configuration on both the source and destination hosts must be identical.

Workaround

Reboot the hypervisor host to recover the VM. Before attempting to migrate the VM again, ensure that the ECC memory configuration on both the source and destination hosts are identical.

Status

Not an NVIDIA bug

Ref. #

200520027

5.10. 9.0 only: nvidia-smi shows the incorrect ECC state for a vGPU

Description

nvidia-smi vgpu -q shows the incorrect ECC state of a vGPU when ECC is enabled on the physical GPU but disabled on the vGPU from the vGPU VM. This issue occurs because data for the physical GPU host is not being reset and is being reused even after reboot.

Status

Resolved in NVIDIA vGPU software 9.1

Ref. #

200524348

5.11. 9.0 only: Incorrect ECC error counts are reported for vGPUs on some GPUs

Description

Incorrect ECC error counts are reported for vGPUs on some GPUs when the command nvidia-smi -q is run from a guest VM.

This issue affects only vGPUs that reside on physical GPUs based on the NVIDIA Volta GPU architecture. For vGPUs on GPUs based on other architectures, the ECC error count is correct.

Status

Resolved in NVIDIA vGPU software 9.1

Ref. #

200525006

5.12. ECC memory settings for a vGPU cannot be changed by using NVIDIA X Server Settings

Description

The ECC memory settings for a vGPU cannot be changed from a Linux guest VM by using NVIDIA X Server Settings. After the ECC memory state has been changed on the ECC Settings page and the VM has been rebooted, the ECC memory state remains unchanged.

Workaround

Use the nvidia-smi command in the guest VM to enable or disable ECC memory for the vGPU as explained in Virtual GPU Software User Guide.

If the ECC memory state remains unchanged even after you use the nvidia-smi command to change it, use the workaround in Changes to ECC memory settings for a Linux vGPU VM by nvidia-smi might be ignored.

Status

Open

Ref. #

200523086

5.13. Changes to ECC memory settings for a Linux vGPU VM by nvidia-smi might be ignored

Description

After the ECC memory state for a Linux vGPU VM has been changed by using the nvidia-smi command and the VM has been rebooted, the ECC memory state might remain unchanged.

This issue occurs when multiple NVIDIA configuration files in the system cause the kernel module option for setting the ECC memory state RMGuestECCState in /etc/modprobe.d/nvidia.conf to be ignored.

When the nvidia-smi command is used to enable ECC memory, the file /etc/modprobe.d/nvidia.conf is created or updated to set the kernel module option RMGuestECCState. Another configuration file in /etc/modprobe.d/ that contains the keyword NVreg_RegistryDwordsPerDevice might cause the kernel module option RMGuestECCState to be ignored.

Workaround

This workaround requires administrator privileges.

  1. Move the entry containing the keyword NVreg_RegistryDwordsPerDevice from the other configuration file to /etc/modprobe.d/nvidia.conf.
  2. Reboot the VM.

Status

Open

Ref. #

200505777

5.14. 9.0 only: VM crashes after the volatile ECC error count is reset

Description

After the command nvidia-smi -p 0 is run from a guest VM to reset the volatile ECC error count, the VM crashes.

This issue does not occur if the EEC state in the VM is set to off.

Status

Resolved in NVIDIA vGPU software 9.1

Ref. #

200526633

5.15. 9.0 only: No vComputeServer option available in NVIDIA X Server Settings

Description

The vComputeServer option is missing from the Manage License section in the NVIDIA X Server Settings window.

As a result of this missing option, the NVIDIA X Server Settings window incorrectly states that the system is licensed for Quadro vDWS when, in fact, the system is licensed for vComputeServer.



Screen capture of the NVIDIA X Server Settings window showing incorrect licensing for vComputeServer

Workaround

If you are licensing a physical GPU for vComputeServer, you must use the configuration file /etc/nvidia/gridd.conf. See Virtual GPU Client Licensing User Guide.

Status

Resolved in NVIDIA vGPU software 9.1

Ref. #

200522255

5.16. 9.0 only: On Linux VMs, the license directory is not deleted when the guest driver is uninstalled

Description

On Linux guest VMs, the license directory /etc/nvidia/license is not deleted when the NVIDIA vGPU software graphics driver is uninstalled.

The following error message is written to the nvidia-uninstaller log file:

Failed to delete the directory '/etc/nvidia' (Directory not empty).

Workaround

As root, remove the /etc/nvidia/license directory after the NVIDIA vGPU software graphics driver is uninstalled.

Status

Resolved in NVIDIA vGPU software 9.1

Ref. #

200524555

5.17. Black screens observed when a VMware Horizon session is connected to four displays

Description

When a VMware Horizon session with Windows 7 is connected to four displays, a black screen is observed on one or more displays.

This issue occurs because a VMware Horizon session does not support connections to four 4K displays with Windows 7.

Status

Not an NVIDIA bug

Ref. #

200503538

5.18. Quadro RTX 8000 and Quadro RTX 6000 GPUs can't be used with VMware vSphere ESXi 6.5

Description

Quadro RTX 8000 and Quadro RTX 6000 GPUs can't be used with VMware vSphere ESXi 6.5. If you attempt to use the Quadro RTX 8000 or Quadro RTX 6000 GPU with VMware vSphere ESXi 6.5, a purple-screen crash occurs after you install the NVIDIA Virtual GPU Manager.

Version

VMware vSphere ESXi 6.5

Status

Open

Ref. #

200491080

5.19. Vulkan applications crash in Windows 7 guest VMs configured with NVIDIA vGPU

Description

In Windows 7 guest VMs configured with NVIDIA vGPU, applications developed with Vulkan APIs crash or throw errors when they are launched. Vulkan APIs require sparse texture support, but in Windows 7 guest VMs configured with NVIDIA vGPU, sparse textures are not enabled.

In Windows 10 guest VMs configured with NVIDIA vGPU, sparse textures are enabled and applications developed with Vulkan APIs run correctly in these VMs.

Status

Open

Ref. #

200381348

5.20. Host core CPU utilization is higher than expected for moderate workloads

Description

When GPU performance is being monitored, host core CPU utilization is higher than expected for moderate workloads. For example, host CPU utilization when only a small number of VMs are running is as high as when several times as many VMs are running.

Workaround

Disable monitoring of the following GPU performance statistics:

  • vGPU engine usage by applications across multiple vGPUs
  • Encoder session statistics
  • Frame buffer capture (FBC) session statistics
  • Statistics gathered by performance counters in guest VMs

Status

Open

Ref. #

2414897

5.21. H.264 encoder falls back to software encoding on 1Q vGPUs with a 4K display

Description

On 1Q vGPUs with a 4K display, a shortage of frame buffer causes the H.264 encoder to fall back to software encoding.

Workaround

Use a 2Q or larger virtual GPU type to provide more frame buffer for each vGPU.

Status

Open

Ref. #

2422580

5.22. H.264 encoder falls back to software encoding on 2Q vGPUs with 3 or more 4K displays

Description

On 2Q vGPUs with three or more 4K displays, a shortage of frame buffer causes the H.264 encoder to fall back to software encoding.

This issue affects only vGPUs assigned to VMs that are running a Linux guest OS.

Workaround

Use a 4Q or larger virtual GPU type to provide more frame buffer for each vGPU.

Status

Open

Ref. #

200457177

5.23. Frame capture while the interactive logon message is displayed returns blank screen

Description

Because of a known limitation with NvFBC, a frame capture while the interactive logon message is displayed returns a blank screen.

An NvFBC session can capture screen updates that occur after the session is created. Before the logon message appears, there is no screen update after the message is shown and, therefore, a black screen is returned instead. If the NvFBC session is created after this update has occurred, NvFBC cannot get a frame to capture.

Workaround

Press Enter or wait for the screen to update for NvFBC to capture the frame.

Status

Not a bug

Ref. #

2115733

5.24. RDS sessions do not use the GPU with some Microsoft Windows Server releases

Description

When some releases of Windows Server are used as a guest OS, Remote Desktop Services (RDS) sessions do not use the GPU. With these releases, the RDS sessions by default use the Microsoft Basic Render Driver instead of the GPU. This default setting enables 2D DirectX applications such as Microsoft Office to use software rendering, which can be more efficient than using the GPU for rendering. However, as a result, 3D applications that use DirectX are prevented from using the GPU.

Version

  • Windows Server 2016
  • Windows Server 2012

Solution

Change the local computer policy to use the hardware graphics adapter for all RDS sessions.

  1. Choose Local Computer Policy > Computer Configuration > Administrative Templates > Windows Components > Remote Desktop Services > Remote Desktop Session Host > Remote Session Environment.

  2. Set the Use the hardware default graphics adapter for all Remote Desktop Services sessions option.

5.25. VMware vMotion fails gracefully under heavy load

Description

Migrating a VM configured with vGPU fails gracefully if the VM is running an intensive workload.

The error stack in the task details on the vSphere web client contains the following error message:

The migration has exceeded the maximum switchover time of 100 second(s). 
ESX has preemptively failed the migration to allow the VM to continue running on the source. 
To avoid this failure, either increase the maximum allowable switchover time or wait until
the VM is performing a less intensive workload.

Workaround

Increase the maximum switchover time by increasing the vmotion.maxSwitchoverSeconds option from the default value of 100 seconds.

For more information, see VMware Knowledge Base Article: vMotion or Storage vMotion of a VM fails with the error: The migration has exceeded the maximum switchover time of 100 second(s) (2141355).

Status

Not an NVIDIA bug

Ref. #

200416700

5.26. View session freezes intermittently after a Linux VM acquires a license

Description

In a Linux VM, the view session can sometimes freeze after the VM acquires a license.

Workaround

Resize the view session.

Status

Open

Ref. #

200426961

5.27. Even when the scheduling policy is equal share, unequal GPU utilization is reported

Description

When the scheduling policy is equal share, unequal GPU engine utilization can be reported for the vGPUs on the same physical GPU.

For example, GPU engine usage for three P40-8Q vGPUs on a Tesla P40 GPU might be reported as follows:

[root@localhost:~] nvidia-smi vgpu
Wed Jun 27 10:33:18 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.59                 Driver Version: 390.59                    |
|-------------------------------+--------------------------------+------------+
| GPU  Name                     | Bus-Id                         | GPU-Util   |
|      vGPU ID    Name          | VM ID    VM Name               | vGPU-Util  |
|===============================+================================+============|
|   0  Tesla P40                | 00000000:81:00.0               |  52%       |
|      2122661    GRID P40-8Q   | 2122682  centos7.4-xmpl-211... |     19%    |
|      2122663    GRID P40-8Q   | 2122692  centos7.4-xmpl-211... |      0%    |
|      2122659    GRID P40-8Q   | 2122664  centos7.4-xmpl-211... |     25%    |
+-------------------------------+--------------------------------+------------+
|   1  Tesla P40                | 00000000:85:00.0               |  58%       |
|      2122662    GRID P40-8Q   | 2122689  centos7.4-xmpl-211... |      0%    |
|      2122658    GRID P40-8Q   | 2122667  centos7.4-xmpl-211... |     59%    |
|      2122660    GRID P40-8Q   | 2122670  centos7.4-xmpl-211... |      0%    |
+-------------------------------+--------------------------------+------------+

The vGPU utilization of the vGPU 2122658 is reported as 59%. However, the expected vGPU utilization should not exceed 33%.

This behavior is a result of the mechanism that is used to measure GPU engine utilization.

Status

Open

Ref. #

2175888

5.28. When the scheduling policy is fixed share, GPU utilization is reported as higher than expected

Description

When the scheduling policy is fixed share, GPU engine utilization can be reported as higher than expected for a vGPU.

For example, GPU engine usage for six P40-4Q vGPUs on a Tesla P40 GPU might be reported as follows:

[root@localhost:~] nvidia-smi vgpu
Mon Aug 20 10:33:18 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.42                 Driver Version: 390.42                    |
|-------------------------------+--------------------------------+------------+
| GPU  Name                     | Bus-Id                         | GPU-Util   |
|      vGPU ID    Name          | VM ID    VM Name               | vGPU-Util  |
|===============================+================================+============|
|   0  Tesla P40                | 00000000:81:00.0               |  99%       |
|      85109      GRID P40-4Q   | 85110    win7-xmpl-146048-1    |     32%    |
|      87195      GRID P40-4Q   | 87196    win7-xmpl-146048-2    |     39%    |
|      88095      GRID P40-4Q   | 88096    win7-xmpl-146048-3    |     26%    |
|      89170      GRID P40-4Q   | 89171    win7-xmpl-146048-4    |      0%    |
|      90475      GRID P40-4Q   | 90476    win7-xmpl-146048-5    |      0%    |
|      93363      GRID P40-4Q   | 93364    win7-xmpl-146048-6    |      0%    |
+-------------------------------+--------------------------------+------------+
|   1  Tesla P40                | 00000000:85:00.0               |   0%       |
+-------------------------------+--------------------------------+------------+

The vGPU utilization of vGPU 85109 is reported as 32%. For vGPU 87195, vGPU utilization is reported as 39%. And for 88095, it is reported as 26%. However, the expected vGPU utilization of any vGPU should not exceed approximately 16.7%.

This behavior is a result of the mechanism that is used to measure GPU engine utilization.

Status

Open

Ref. #

2227591

5.29. nvidia-smi reports that vGPU migration is supported on all hypervisors

Description

The command nvidia-smi vgpu -m shows that vGPU migration is supported on all hypervisors, even hypervisors or hypervisor versions that do not support vGPU migration.

Status

Closed

Ref. #

200407230

5.30. GPU resources not available error during VMware instant clone provisioning

Description

A GPU resources not available error might occur during VMware instant clone provisioning. On Windows VMs, a Video TDR failure - NVLDDMKM.sys error causes a blue screen crash.

This error occurs when options for VMware Virtual Shared Graphics Acceleration (vSGA) are set for a VM that is configured with NVIDIA vGPU. VMware vSGA is a feature of VMware vSphere that enables multiple virtual machines to share the physical GPUs on ESXi hosts and can be used as an alternative to NVIDIA vGPU.

Depending on the combination of options set, one of the following error messages is seen when the VM is powered on:

  • Module ‘MKS’ power on failed.

    This message is seen when the following options are set:

    • Enable 3D support is selected.
    • 3D Renderer is set to Hardware
    • The graphics type of all GPUs on the ESXi host is Shared Direct.
  • Hardware GPU resources are not available. The virtual machine will use software rendering.

    This message is seen when the following options are set:

    • Enable 3D support is selected.
    • 3D Renderer is set to Automatic.
    • The graphics type of all GPUs on the ESXi host is Shared Direct.

Resolution

If you want to use NVIDIA vGPU, unset any options for VMware vSGA that are set for the VM.

  1. Ensure that the VM is powered off.
  2. Open the vCenter Web UI.
  3. In the vCenter Web UI, right-click the VM and choose Edit Settings.
  4. Click the Virtual Hardware tab.
  5. In the device list, expand the Video card node and de-select the Enable 3D support option.
  6. Start the VM.

Status

Not a bug

Ref. #

2369683

5.31. VMs with 32 GB or more of RAM fail to boot with GPUs requiring 64 GB of MMIO space

Description

VMs with 32 GB or more of RAM fail to boot with GPUs that require 64 GB of MMIO space. VMs boot successfully with RAM allocations of less than 32 GB.

The following GPUs require 64 GB of MMIO space:

  • Tesla P6
  • Tesla P40

Version

This issue affects the following versions of VMware vSphere ESXi:

  • 6.0 Update 3 and later updates
  • 6.5 and later updates

Workaround

If you want to use a VM with 32 GB or more of RAM with GPUs that require 64 GB of MMIO space, use this workaround:

  1. Create a VM to which less than 32 GB of RAM is allocated.

  2. Choose VM Options > Advanced and set pciPassthru.use64bitMMIO="TRUE".

  3. Allocate the required amount of RAM to the VM.

For more information, see VMware Knowledge Base Article: VMware vSphere VMDirectPath I/O: Requirements for Platforms and Devices (2142307).

Status

Not an NVIDIA bug

Resolved in VMware vSphere ESXi 6.7

Ref. #

2043171

5.32. Module load failed during VIB downgrade from R390 to R384

Description

Some registry keys are available only with the R390 Virtual GPU Manager, for example, NVreg_IgnoreMMIOCheck. If any keys that are available only with the R390 Virtual GPU Manager are set, the NVIDIA module fails to load after a downgrade from R390 to R384.

When nvidia-smi is run without any arguments to verify the installation, the following error message is displayed:

NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.

Workaround

Before uninstalling the R390 VIB, clear all parameters of the nvidia module to remove any registry keys that are available only for the R390 Virtual GPU Manager.

# esxcli system module parameters set -p "" -m nvidia

Status

Not an NVIDIA bug

Ref. #

200366884

5.33. Resolution is not updated after a VM acquires a license and is restarted

Description

In a Red Enterprise Linux 7.3 guest VM, an increase in resolution from 1024×768 to 2560×1600 is not applied after a license is acquired and the gridd service is restarted. This issue occurs if the multimonitor parameter is added to the xorg.conf file.

Version

Red Enterprise Linux 7.3

Status

Open

Ref. #

200275925

5.34. Tesla P40 cannot be used in pass-through mode

Description

Pass-through mode on Tesla P40 GPUs and other GPUs based on the Pascal architecture does not work as expected. In some situations, after the VM is powered on, the guest OS crashes or fails to boot.

Workaround

Ensure that your GPUs are configured as described in Requirements for Using GPUs Based on the Pascal and Volta Architectures in Pass-Through Mode

Status

Not a bug

Ref. #

1944539

5.35. On Linux, 3D applications run slowly when windows are dragged

Description

When windows for 3D applications on Linux are dragged, the frame rate drops substantially and the application runs slowly.

This issue does not affect 2D applications.

Status

Open

Ref. #

1949482

5.36. A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise Linux and CentOS

Description

On Red Hat Enterprise Linux 6.8 and 6.9, and CentOS 6.8 and 6.9, a segmentation fault in DBus code causes the nvidia-gridd service to exit.

The nvidia-gridd service uses DBus for communication with NVIDIA X Server Settings to display licensing information through the Manage License page. Disabling the GUI for licensing resolves this issue.

To prevent this issue, the GUI for licensing is disabled by default. You might encounter this issue if you have enabled the GUI for licensing and are using Red Hat Enterprise Linux 6.8 or 6.9, or CentOS 6.8 and 6.9.

Version

Red Hat Enterprise Linux 6.8 and 6.9

CentOS 6.8 and 6.9

Status

Open

Ref. #

  • 200358191
  • 200319854
  • 1895945

5.37. No Manage License option available in NVIDIA X Server Settings by default

Description

By default, the Manage License option is not available in NVIDIA X Server Settings. This option is missing because the GUI for licensing on Linux is disabled by default to work around the issue that is described in A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise Linux and CentOS.

Workaround

This workaround requires sudo privileges.

Note: Do not use this workaround with Red Hat Enterprise Linux 6.8 and 6.9 or CentOS 6.8 and 6.9. To prevent a segmentation fault in DBus code from causing the nvidia-gridd service from exiting, the GUI for licensing must be disabled with these OS versions.

If you are licensing a physical GPU for vComputeServer, you must use the configuration file /etc/nvidia/gridd.conf.

  1. If NVIDIA X Server Settings is running, shut it down.
  2. If the /etc/nvidia/gridd.conf file does not already exist, create it by copying the supplied template file /etc/nvidia/gridd.conf.template.

  3. As root, edit the /etc/nvidia/gridd.conf file to set the EnableUI option to TRUE.

  4. Start the nvidia-gridd service.

    # sudo service nvidia-gridd start

When NVIDIA X Server Settings is restarted, the Manage License option is now available.

Status

Open

5.38. Licenses remain checked out when VMs are forcibly powered off

Description

NVIDIA vGPU software licenses remain checked out on the license server when non-persistent VMs are forcibly powered off.

The NVIDIA service running in a VM returns checked out licenses when the VM is shut down. In environments where non-persistent licensed VMs are not cleanly shut down, licenses on the license server can become exhausted. For example, this issue can occur in automated test environments where VMs are frequently changing and are not guaranteed to be cleanly shut down. The licenses from such VMs remain checked out against their MAC address for seven days before they time out and become available to other VMs.

Resolution

If VMs are routinely being powered off without clean shutdown in your environment, you can avoid this issue by shortening the license borrow period. To shorten the license borrow period, set the LicenseInterval configuration setting in your VM image. For details, refer to Virtual GPU Client Licensing User Guide.

Status

Closed

Ref. #

1694975

5.39. Memory exhaustion can occur with vGPU profiles that have 512 Mbytes or less of frame buffer

Description

Memory exhaustion can occur with vGPU profiles that have 512 Mbytes or less of frame buffer.

This issue typically occurs in the following situations:

  • Full screen 1080p video content is playing in a browser. In this situation, the session hangs and session reconnection fails.
  • Multiple display heads are used with Citrix Virtual Apps and Desktops or VMware Horizon on a Windows 10 guest VM.
  • Higher resolution monitors are used.
  • Applications that are frame-buffer intensive are used.
  • NVENC is in use.

To reduce the possibility of memory exhaustion, NVENC is disabled on profiles that have 512 Mbytes or less of frame buffer.

When memory exhaustion occurs, the NVIDIA host driver reports Xid error 31 and Xid error 43 in the VMware vSphere log file vmware.log in the guest VM’s storage directory.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

  • Tesla M6-0B, M6-0Q
  • Tesla M10-0B, M10-0Q
  • Tesla M60-0B, M60-0Q

The root cause is a known issue associated with changes to the way that recent Microsoft operating systems handle and allow access to overprovisioning messages and errors. If your systems are provisioned with enough frame buffer to support your use cases, you should not encounter these issues.

Workaround

  • Use an appropriately sized vGPU to ensure that the frame buffer supplied to a VM through the vGPU is adequate for your workloads.
  • Monitor your frame buffer usage.
  • If you are using Windows 10, consider these workarounds and solutions:

Status

Open

Ref. #

  • 200130864
  • 1803861

5.40. vGPU VM fails to boot in ESXi 6.5 if the graphics type is Shared

Description

Note: If vSGA is being used, this issue shouldn't be encountered and changing the default graphics type is not necessary.

On VMware vSphere Hypervisor (ESXi) 6.5, after vGPU is configured, VMs to which a vGPU is assigned may fail to start and the following error message may be displayed:

The amount of graphics resource available in the parent resource pool is insufficient for the operation.

The vGPU Manager VIB provides vSGA and vGPU functionality in a single VIB. After this VIB is installed, the default graphics type is Shared, which provides vSGA functionality. To enable vGPU support for VMs in VMware vSphere 6.5, you must change the default graphics type to Shared Direct. If you do not change the default graphics type you will encounter this issue.

Version

VMware vSphere Hypervisor (ESXi) 6.5

Workaround

Change the default graphics type to Shared Direct as explained in Virtual GPU Software User Guide.

Status

Open

Ref. #

200256224

5.41. ESXi 6.5 web client shows high memory usage even when VMs are idle

Description

On VMware vSphere Hypervisor (ESXi) 6.5, the web client shows a memory usage alarm with critical severity for VMs to which a vGPU is attached even when the VMs are idle. When memory usage is monitored from inside the VM, no memory usage alarm is shown. The web client does not show a memory usage alarm for the same VMs without an attached vGPU.

Version

VMware vSphere Hypervisor (ESXi) 6.5

Workaround

Avoid using the VMware vSphere Hypervisor (ESXi) 6.5 web client to monitor memory usage for VMs to which a vGPU is attached.

Status

Not an NVIDIA bug

Ref. #

200191065

5.42. VMs configured with NVIDIA vGPU must not be on a host in a VMware DRS cluster

Description

The ESXi host on which VMs configured with NVIDIA vGPU reside must not be a member of a VMware Distributed Resource Scheduler (DRS) cluster. The installer for the NVIDIA driver for NVIDIA vGPU software cannot locate the NVIDIA vGPU software GPU card on a host in a VMware DRS Cluster. Any attempt to install the driver on a VM on a host in a DRS cluster fails with the following error:

NVIDIA Installer cannot continue
This graphics driver could not find compatible graphics hardware.

Furthermore, you cannot overcome this limitation by configuring a VM with NVIDIA vGPU and installing the driver on the VM on a host outside a DRS cluster and moving the host into the DRS cluster after configuring it.

Workaround

Move each VM configured with NVIDIA vGPU to a host outside the DRS cluster.

  1. Remove NVIDIA Virtual GPU Manager from the host in the DRS cluster.
  2. Create a cluster of VMware ESXi hosts outside the DRS domain.
  3. Install the NVIDIA Virtual GPU Manager on an ESXi host in the cluster that you created in the previous step.
  4. Create a vSphere VM for use with NVIDIA vGPU.
  5. Configure the vSphere VM with NVIDIA vGPU.
  6. Boot the vSphere VM and install the NVIDIA driver for NVIDIA vGPU.

For instructions for performing these tasks, refer to Virtual GPU Software User Guide.

Status

Open

Ref. #

1933449

5.43. GNOME Display Manager (GDM) fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0

Description

GDM fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0 with the following error:

Oh no! Something has gone wrong!

Workaround

Permanently enable permissive mode for Security Enhanced Linux (SELinux).

  1. As root, edit the /etc/selinux/config file to set SELINUX to permissive.
    SELINUX=permissive
  2. Reboot the system.
    ~]# reboot

For more information, see Permissive Mode in Red Hat Enterprise Linux 7 SELinux User's and Administrator's Guide.

Status

Not an NVIDIA bug

Ref. #

200167868

5.44. NVIDIA Control Panel fails to start and reports that “you are not currently using a display that is attached to an Nvidia GPU”

Description

When you launch NVIDIA Control Panel on a VM configured with vGPU, it fails to start and reports that you are not using a display attached to an NVIDIA GPU. This happens because Windows is using VMware’s SVGA device instead of NVIDIA vGPU.

Fix

Make NVIDIA vGPU the primary display adapter.

Use Windows screen resolution control panel to make the second display, identified as “2” and corresponding to NVIDIA vGPU, to be the active display and select the Show desktop only on 2 option. Click Apply to accept the configuration.

You may need to click on the Detect button for Windows to recognize the display connected to NVIDIA vGPU.

Note: If the VMware Horizon/View agent is installed in the VM, the NVIDIA GPU is automatically selected in preference to the SVGA device.

Status

Open

Ref. #

5.45. VM configured with more than one vGPU fails to initialize vGPU when booted

Description

Using the current VMware vCenter user interface, it is possible to configure a VM with more than one vGPU device. When booted, the VM boots in VMware SVGA mode and doesn’t load the NVIDIA driver. The additional vGPU devices are present in Windows Device Manager but display a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

Workaround

NVIDIA vGPU currently supports a single virtual GPU device per VM. Remove any additional vGPUs from the VM configuration before booting the VM.

Status

Open

Ref. #

5.46. A VM configured with both a vGPU and a passthrough GPU fails to start the passthrough GPU

Description

Using the current VMware vCenter user interface, it is possible to configure a VM with a vGPU device and a passthrough (direct path) GPU device. This is not a currently supported configuration for vGPU. The passthrough GPU appears in Windows Device Manager with a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

Workaround

Do not assign vGPU and passthrough GPUs to a VM simultaneously.

Status

Open

Ref. #

1735002

5.47. vGPU allocation policy fails when multiple VMs are started simultaneously

Description

If multiple VMs are started simultaneously, vSphere may not adhere to the placement policy currently in effect. For example, if the default placement policy (breadth-first) is in effect, and 4 physical GPUs are available with no resident vGPUs, then starting 4 VMs simultaneously should result in one vGPU on each GPU. In practice, more than one vGPU may end up resident on a GPU.

Workaround

Start VMs individually.

Status

Not an NVIDIA bug

Ref. #

200042690

5.48. Before Horizon agent is installed inside a VM, the Start menu’s sleep option is available

Description

When a VM is configured with a vGPU, the Sleep option remains available in the Windows Start menu. Sleep is not supported on vGPU and attempts to use it will lead to undefined behavior.

Workaround

Do not use Sleep with vGPU.

Installing the VMware Horizon agent will disable the Sleep option.

Status

Closed

Ref. #

200043405

5.49. vGPU-enabled VMs fail to start, nvidia-smi fails when VMs are configured with too high a proportion of the server’s memory.

Description

If vGPU-enabled VMs are assigned too high a proportion of the server’s total memory, the following errors occur:

  • One or more of the VMs may fail to start with the following error:
    The available Memory resources in the parent resource pool are insufficient for the operation
  • When run in the host shell, the nvidia-smi utility returns this error:
    -sh: can't fork

For example, on a server configured with 256G of memory, these errors may occur if vGPU-enabled VMs are assigned more than 243G of memory.

Workaround

Reduce the total amount of system memory assigned to the VMs.

Status

Closed

Ref. #

200060499

5.50. On reset or restart VMs fail to start with the error VMIOP: no graphics device is available for vGPU…

Description

On a system running a maximal configuration, that is, with the maximum number of vGPU VMs the server can support, some VMs might fail to start post a reset or restart operation.

Fix

Upgrade to ESXi 6.0 Update 1.

Status

Closed

Ref. #

200097546

5.51. nvidia-smi shows high GPU utilization for vGPU VMs with active Horizon sessions

Description

vGPU VMs with an active Horizon connection utilize a high percentage of the GPU on the ESXi host. The GPU utilization remains high for the duration of the Horizon session even if there are no active applications running on the VM.

Workaround

None

Status

Open

Partially resolved for Horizon 7.0.1:

  • For Blast connections, GPU utilization is no longer high.
  • For PCoIP connections, utilization remains high.

Ref. #

1735009

Notices

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use. No license is granted by implication of otherwise under any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA Corporation products are not authorized as critical components in life support devices or systems without express written approval of NVIDIA Corporation.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, NVIDIA GRID, vGPU, Pascal, Quadro, and Tesla are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.