nemo_automodel.components.datasets.llm.xlam#
Module Contents#
Functions#
Convert xLAM tool definitions into OpenAI tool schema. |
|
Convert xLAM answers field into OpenAI tool_calls messages. |
|
Load and preprocess the xLAM function-calling dataset to OpenAI messages compatible with the bulbasaur chat template (tool-calling aware). |
Data#
API#
- nemo_automodel.components.datasets.llm.xlam.logger#
‘getLogger(…)’
- nemo_automodel.components.datasets.llm.xlam._TYPE_MAP#
None
- nemo_automodel.components.datasets.llm.xlam._json_load_if_str(value)#
- nemo_automodel.components.datasets.llm.xlam._convert_tools(
- raw_tools: List[Dict],
Convert xLAM tool definitions into OpenAI tool schema.
- nemo_automodel.components.datasets.llm.xlam._convert_tool_calls(
- raw_calls: List[Dict],
- example_id: Optional[int] = None,
Convert xLAM answers field into OpenAI tool_calls messages.
- nemo_automodel.components.datasets.llm.xlam._format_example(
- example,
- tokenizer,
- eos_token_id,
- pad_token_id,
- seq_length=None,
- padding=None,
- truncation=None,
- nemo_automodel.components.datasets.llm.xlam.make_xlam_dataset(
- tokenizer,
- seq_length=None,
- limit_dataset_samples=None,
- fp8=False,
- split='train',
- dataset_name='Salesforce/xlam-function-calling-60k',
- padding=False,
- truncation=False,
Load and preprocess the xLAM function-calling dataset to OpenAI messages compatible with the bulbasaur chat template (tool-calling aware).
Each example is formatted as:
user: the natural language query
assistant: emits tool_calls with serialized arguments
tools: OpenAI function schema derived from the dataset tool specs