nemo_automodel.components.models.minimax_m2.state_dict_adapter#
Module Contents#
Classes#
Convert between MiniMax-M2.1 HF checkpoints and native grouped-expert format. |
Functions#
Data#
API#
- nemo_automodel.components.models.minimax_m2.state_dict_adapter.NON_QUANTIZED_KEY_PATTERNS#
[‘input_layernorm.weight’, ‘post_attention_layernorm.weight’, ‘norm.weight’, ‘lm_head.weight’, ‘embe…
- nemo_automodel.components.models.minimax_m2.state_dict_adapter.should_quantize_key(key: str) bool#
- class nemo_automodel.components.models.minimax_m2.state_dict_adapter.MiniMaxM2StateDictAdapter(
- config: Any,
- moe_config: nemo_automodel.components.moe.layers.MoEConfig,
- backend: nemo_automodel.components.models.common.BackendConfig,
- dtype: torch.dtype = torch.float32,
Bases:
nemo_automodel.components.moe.state_dict_mixin.MoESplitExpertsStateDictMixin,nemo_automodel.components.checkpoint.state_dict_adapter.StateDictAdapterConvert between MiniMax-M2.1 HF checkpoints and native grouped-expert format.
Initialization
- property _expert_path_segment: str#
- _dequantize(
- state_dict: dict[str, Any],
- _hf_key_to_native(key: str) str#
- _native_key_to_hf(key: str) str#
- to_hf(
- state_dict: dict[str, Any],
- exclude_key_regex: Optional[str] = None,
- quantization: bool = False,
- **kwargs,
- from_hf(
- hf_state_dict: dict[str, Any],
- device_mesh: Optional[torch.distributed.device_mesh.DeviceMesh] = None,
- **kwargs,
- convert_single_tensor_to_hf(
- fqn: str,
- tensor: Any,
- **kwargs,