nemo_automodel.components.models.qwen3_vl_moe.state_dict_adapter#

Module Contents#

Classes#

Qwen3VLMoeStateDictAdapter

Converts between HF Qwen3-VL checkpoints and grouped-experts native format. Qwen3-VL HF have aggregated expert weights across all experts.

API#

class nemo_automodel.components.models.qwen3_vl_moe.state_dict_adapter.Qwen3VLMoeStateDictAdapter(
config: Any,
moe_config: nemo_automodel.components.moe.layers.MoEConfig,
backend: nemo_automodel.components.moe.utils.BackendConfig,
dtype: torch.dtype = torch.float32,
)#

Bases: nemo_automodel.components.checkpoint.state_dict_adapter.StateDictAdapter

Converts between HF Qwen3-VL checkpoints and grouped-experts native format. Qwen3-VL HF have aggregated expert weights across all experts.

Initialization

to_hf(
state_dict: dict[str, Any],
exclude_key_regex: Optional[str] = None,
quantization: bool = False,
**kwargs,
) dict[str, Any]#
from_hf(
hf_state_dict: dict[str, Any],
device_mesh: Optional[torch.distributed.device_mesh.DeviceMesh] = None,
**kwargs,
) dict[str, Any]#
convert_single_tensor_to_hf(
fqn: str,
tensor: Any,
**kwargs,
) list[tuple[str, Any]]#

Convert a single native tensor back to the aggregated HF format.