Source code for nemo_export.trt_llm.utils

# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Dict, Optional, Tuple

from nemo_export_deploy_common.import_utils import MISSING_TENSORRT_LLM_MSG, UnavailableError

try:
    import tensorrt_llm

    HAVE_TRT_LLM = True
except (ImportError, ModuleNotFoundError):
    HAVE_TRT_LLM = False


[docs] def is_rank(rank: Optional[int]) -> bool: """Check if the current MPI rank matches the specified rank. Args: rank (Optional[int]): The rank to check against. Returns: bool: True if the current rank matches the specified rank or if rank is None. """ if not HAVE_TRT_LLM: raise UnavailableError(MISSING_TENSORRT_LLM_MSG) current_rank = tensorrt_llm.mpi_rank() if rank is None: return True if isinstance(rank, int): return current_rank == rank raise ValueError(f"Invalid rank argument {rank} of type {type(rank)}.")
[docs] def determine_quantization_settings( nemo_model_config: Dict[str, Any], fp8_quantized: Optional[bool] = None, fp8_kvcache: Optional[bool] = None, ) -> Tuple[bool, bool]: """Determines the exported models quantization settings. Reads from NeMo config, with optional override. Args: nemo_model_config (dict): NeMo model configuration fp8_quantized (optional, bool): User-specified quantization flag fp8_kvcache (optional, bool): User-specified cache quantization flag Returns: Tuple[bool, bool]: - Model quantization flag - Model kv-cache quantization flag """ is_nemo_quantized: bool = nemo_model_config.get("fp8", False) if fp8_quantized is None: fp8_quantized = is_nemo_quantized if fp8_kvcache is None: fp8_kvcache = is_nemo_quantized return fp8_quantized, fp8_kvcache