Source code for modulus.datapipes.gnn.utils
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import json
import torch
from typing import Dict, Any
try:
import vtk
except:
raise ImportError("vtk package is required. Install with pip install vtk.")
[docs]def read_vtp_file(file_path: str) -> Any:
"""
Read a VTP file and return the polydata.
Parameters
----------
file_path : str
Path to the VTP file.
Returns
-------
vtkPolyData
The polydata read from the VTP file.
"""
# Check if file exists
if not os.path.exists(file_path):
raise FileNotFoundError(f"{file_path} does not exist.")
# Check if file has .vtp extension
if not file_path.endswith(".vtp"):
raise ValueError(f"Expected a .vtp file, got {file_path}")
reader = vtk.vtkXMLPolyDataReader()
reader.SetFileName(file_path)
reader.Update()
# Get the polydata
polydata = reader.GetOutput()
# Check if polydata is valid
if polydata is None:
raise ValueError(f"Failed to read polydata from {file_path}")
return polydata
[docs]def save_json(var: Dict[str, torch.Tensor], file: str) -> None:
"""
Saves a dictionary of tensors to a JSON file.
Parameters
----------
var : Dict[str, torch.Tensor]
Dictionary where each value is a PyTorch tensor.
file : str
Path to the output JSON file.
"""
var_list = {k: v.numpy().tolist() for k, v in var.items()}
with open(file, "w") as f:
json.dump(var_list, f)
[docs]def load_json(file: str) -> Dict[str, torch.Tensor]:
"""
Loads a JSON file into a dictionary of PyTorch tensors.
Parameters
----------
file : str
Path to the JSON file.
Returns
-------
Dict[str, torch.Tensor]
Dictionary where each value is a PyTorch tensor.
"""
with open(file, "r") as f:
var_list = json.load(f)
var = {k: torch.tensor(v, dtype=torch.float) for k, v in var_list.items()}
return var