TensorRT-LLM Prometheus Metrics#
Overview#
When running TensorRT-LLM through Dynamo, TensorRT-LLM’s Prometheus metrics are automatically passed through and exposed on Dynamo’s /metrics endpoint (default port 8081). This allows you to access both TensorRT-LLM engine metrics (prefixed with trtllm_) and Dynamo runtime metrics (prefixed with dynamo_*) from a single worker backend endpoint.
Additional performance metrics are available via non-Prometheus APIs (see Non-Prometheus Performance Metrics below).
As of the date of this documentation, the included TensorRT-LLM version 1.1.0rc5 exposes 5 basic Prometheus metrics. Note that the trtllm_ prefix is added by Dynamo.
For Dynamo runtime metrics, see the Dynamo Metrics Guide.
For visualization setup instructions, see the Prometheus and Grafana Setup Guide.
Environment Variables#
Variable |
Description |
Default |
Example |
|---|---|---|---|
|
System metrics/health port |
|
|
Getting Started Quickly#
This is a single machine example.
Start Observability Stack#
For visualizing metrics with Prometheus and Grafana, start the observability stack. See Observability Getting Started for instructions.
Launch Dynamo Components#
Launch a frontend and TensorRT-LLM backend to test metrics:
# Start frontend (default port 8000, override with --http-port or DYN_HTTP_PORT env var)
$ python -m dynamo.frontend
# Enable system metrics server on port 8081 and enable metrics collection
$ DYN_SYSTEM_PORT=8081 python -m dynamo.trtllm --model <model_name> --publish-events-and-metrics
Note: The backend must be set to "pytorch" for metrics collection (enforced in components/src/dynamo/trtllm/main.py). TensorRT-LLM’s MetricsCollector integration has only been tested/validated with the PyTorch backend.
Wait for the TensorRT-LLM worker to start, then send requests and check metrics:
# Send a request
curl -H 'Content-Type: application/json' \
-d '{
"model": "<model_name>",
"max_completion_tokens": 100,
"messages": [{"role": "user", "content": "Hello"}]
}' \
http://localhost:8000/v1/chat/completions
# Check metrics from the worker
curl -s localhost:8081/metrics | grep "^trtllm_"
Exposed Metrics#
TensorRT-LLM exposes metrics in Prometheus Exposition Format text at the /metrics HTTP endpoint. All TensorRT-LLM engine metrics use the trtllm_ prefix and include labels (e.g., model_name, engine_type, finished_reason) to identify the source.
Note: TensorRT-LLM uses model_name instead of Dynamo’s standard model label convention.
Example Prometheus Exposition Format text:
# HELP trtllm_request_success_total Count of successfully processed requests.
# TYPE trtllm_request_success_total counter
trtllm_request_success_total{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm",finished_reason="stop"} 150.0
trtllm_request_success_total{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm",finished_reason="length"} 5.0
# HELP trtllm_time_to_first_token_seconds Histogram of time to first token in seconds.
# TYPE trtllm_time_to_first_token_seconds histogram
trtllm_time_to_first_token_seconds_bucket{le="0.01",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 0.0
trtllm_time_to_first_token_seconds_bucket{le="0.05",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 12.0
trtllm_time_to_first_token_seconds_count{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 150.0
trtllm_time_to_first_token_seconds_sum{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 8.75
# HELP trtllm_e2e_request_latency_seconds Histogram of end to end request latency in seconds.
# TYPE trtllm_e2e_request_latency_seconds histogram
trtllm_e2e_request_latency_seconds_bucket{le="0.5",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 25.0
trtllm_e2e_request_latency_seconds_count{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 150.0
trtllm_e2e_request_latency_seconds_sum{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 45.2
# HELP trtllm_time_per_output_token_seconds Histogram of time per output token in seconds.
# TYPE trtllm_time_per_output_token_seconds histogram
trtllm_time_per_output_token_seconds_bucket{le="0.1",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 120.0
trtllm_time_per_output_token_seconds_count{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 150.0
trtllm_time_per_output_token_seconds_sum{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 12.5
# HELP trtllm_request_queue_time_seconds Histogram of time spent in WAITING phase for request.
# TYPE trtllm_request_queue_time_seconds histogram
trtllm_request_queue_time_seconds_bucket{le="1.0",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 140.0
trtllm_request_queue_time_seconds_count{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 150.0
trtllm_request_queue_time_seconds_sum{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 32.1
Note: The specific metrics shown above are examples and may vary depending on your TensorRT-LLM version. Always inspect your actual /metrics endpoint for the current list.
Metric Categories#
TensorRT-LLM provides metrics in the following categories (all prefixed with trtllm_):
Request metrics - Request success tracking and latency measurements
Performance metrics - Time to first token (TTFT), time per output token (TPOT), and queue time
Note: Metrics may change between TensorRT-LLM versions. Always inspect the /metrics endpoint for your version.
Available Metrics#
The following metrics are exposed via Dynamo’s /metrics endpoint (with the trtllm_ prefix added by Dynamo) for TensorRT-LLM version 1.1.0rc5:
trtllm_request_success_total(Counter) — Count of successfully processed requests by finish reasonLabels:
model_name,engine_type,finished_reason
trtllm_e2e_request_latency_seconds(Histogram) — End-to-end request latency (seconds)Labels:
model_name,engine_type
trtllm_time_to_first_token_seconds(Histogram) — Time to first token, TTFT (seconds)Labels:
model_name,engine_type
trtllm_time_per_output_token_seconds(Histogram) — Time per output token, TPOT (seconds)Labels:
model_name,engine_type
trtllm_request_queue_time_seconds(Histogram) — Time a request spends waiting in the queue (seconds)Labels:
model_name,engine_type
These metric names and availability are subject to change with TensorRT-LLM version updates.
TensorRT-LLM provides Prometheus metrics through the MetricsCollector class (see tensorrt_llm/metrics/collector.py).
Non-Prometheus Performance Metrics#
TensorRT-LLM provides extensive performance data beyond the basic Prometheus metrics. These are not currently exposed to Prometheus.
Available via Code References#
RequestPerfMetrics Structure: tensorrt_llm/executor/result.py - KV cache, timing, speculative decoding metrics
Engine Statistics:
engine.llm.get_stats_async()- System-wide aggregate statisticsKV Cache Events:
engine.llm.get_kv_cache_events_async()- Real-time cache operations
Example RequestPerfMetrics JSON Structure#
{
"timing_metrics": {
"arrival_time": 1234567890.123,
"first_scheduled_time": 1234567890.135,
"first_token_time": 1234567890.150,
"last_token_time": 1234567890.300,
"kv_cache_size": 2048576,
"kv_cache_transfer_start": 1234567890.140,
"kv_cache_transfer_end": 1234567890.145
},
"kv_cache_metrics": {
"num_total_allocated_blocks": 100,
"num_new_allocated_blocks": 10,
"num_reused_blocks": 90,
"num_missed_blocks": 5
},
"speculative_decoding": {
"acceptance_rate": 0.85,
"total_accepted_draft_tokens": 42,
"total_draft_tokens": 50
}
}
Note: These structures are valid as of the date of this documentation but are subject to change with TensorRT-LLM version updates.
Implementation Details#
Prometheus Integration: Uses the
MetricsCollectorclass fromtensorrt_llm.metrics(see collector.py)Dynamo Integration: Uses
register_engine_metrics_callback()function withadd_prefix="trtllm_"Engine Configuration:
return_perf_metricsset toTruewhen--publish-events-and-metricsis enabledInitialization: Metrics appear after TensorRT-LLM engine initialization completes
Metadata:
MetricsCollectorinitialized with model metadata (model name, engine type)