TensorRT-LLM Prometheus Metrics#

Overview#

When running TensorRT-LLM through Dynamo, TensorRT-LLM’s Prometheus metrics are automatically passed through and exposed on Dynamo’s /metrics endpoint (default port 8081). This allows you to access both TensorRT-LLM engine metrics (prefixed with trtllm_) and Dynamo runtime metrics (prefixed with dynamo_*) from a single worker backend endpoint.

Additional performance metrics are available via non-Prometheus APIs (see Non-Prometheus Performance Metrics below).

As of the date of this documentation, the included TensorRT-LLM version 1.1.0rc5 exposes 5 basic Prometheus metrics. Note that the trtllm_ prefix is added by Dynamo.

For Dynamo runtime metrics, see the Dynamo Metrics Guide.

For visualization setup instructions, see the Prometheus and Grafana Setup Guide.

Environment Variables#

Variable

Description

Default

Example

DYN_SYSTEM_PORT

System metrics/health port

-1 (disabled)

8081

Getting Started Quickly#

This is a single machine example.

Start Observability Stack#

For visualizing metrics with Prometheus and Grafana, start the observability stack. See Observability Getting Started for instructions.

Launch Dynamo Components#

Launch a frontend and TensorRT-LLM backend to test metrics:

# Start frontend (default port 8000, override with --http-port or DYN_HTTP_PORT env var)
$ python -m dynamo.frontend

# Enable system metrics server on port 8081 and enable metrics collection
$ DYN_SYSTEM_PORT=8081 python -m dynamo.trtllm --model <model_name> --publish-events-and-metrics

Note: The backend must be set to "pytorch" for metrics collection (enforced in components/src/dynamo/trtllm/main.py). TensorRT-LLM’s MetricsCollector integration has only been tested/validated with the PyTorch backend.

Wait for the TensorRT-LLM worker to start, then send requests and check metrics:

# Send a request
curl -H 'Content-Type: application/json' \
-d '{
  "model": "<model_name>",
  "max_completion_tokens": 100,
  "messages": [{"role": "user", "content": "Hello"}]
}' \
http://localhost:8000/v1/chat/completions

# Check metrics from the worker
curl -s localhost:8081/metrics | grep "^trtllm_"

Exposed Metrics#

TensorRT-LLM exposes metrics in Prometheus Exposition Format text at the /metrics HTTP endpoint. All TensorRT-LLM engine metrics use the trtllm_ prefix and include labels (e.g., model_name, engine_type, finished_reason) to identify the source.

Note: TensorRT-LLM uses model_name instead of Dynamo’s standard model label convention.

Example Prometheus Exposition Format text:

# HELP trtllm_request_success_total Count of successfully processed requests.
# TYPE trtllm_request_success_total counter
trtllm_request_success_total{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm",finished_reason="stop"} 150.0
trtllm_request_success_total{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm",finished_reason="length"} 5.0

# HELP trtllm_time_to_first_token_seconds Histogram of time to first token in seconds.
# TYPE trtllm_time_to_first_token_seconds histogram
trtllm_time_to_first_token_seconds_bucket{le="0.01",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 0.0
trtllm_time_to_first_token_seconds_bucket{le="0.05",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 12.0
trtllm_time_to_first_token_seconds_count{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 150.0
trtllm_time_to_first_token_seconds_sum{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 8.75

# HELP trtllm_e2e_request_latency_seconds Histogram of end to end request latency in seconds.
# TYPE trtllm_e2e_request_latency_seconds histogram
trtllm_e2e_request_latency_seconds_bucket{le="0.5",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 25.0
trtllm_e2e_request_latency_seconds_count{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 150.0
trtllm_e2e_request_latency_seconds_sum{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 45.2

# HELP trtllm_time_per_output_token_seconds Histogram of time per output token in seconds.
# TYPE trtllm_time_per_output_token_seconds histogram
trtllm_time_per_output_token_seconds_bucket{le="0.1",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 120.0
trtllm_time_per_output_token_seconds_count{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 150.0
trtllm_time_per_output_token_seconds_sum{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 12.5

# HELP trtllm_request_queue_time_seconds Histogram of time spent in WAITING phase for request.
# TYPE trtllm_request_queue_time_seconds histogram
trtllm_request_queue_time_seconds_bucket{le="1.0",model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 140.0
trtllm_request_queue_time_seconds_count{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 150.0
trtllm_request_queue_time_seconds_sum{model_name="Qwen/Qwen3-0.6B",engine_type="trtllm"} 32.1

Note: The specific metrics shown above are examples and may vary depending on your TensorRT-LLM version. Always inspect your actual /metrics endpoint for the current list.

Metric Categories#

TensorRT-LLM provides metrics in the following categories (all prefixed with trtllm_):

  • Request metrics - Request success tracking and latency measurements

  • Performance metrics - Time to first token (TTFT), time per output token (TPOT), and queue time

Note: Metrics may change between TensorRT-LLM versions. Always inspect the /metrics endpoint for your version.

Available Metrics#

The following metrics are exposed via Dynamo’s /metrics endpoint (with the trtllm_ prefix added by Dynamo) for TensorRT-LLM version 1.1.0rc5:

  • trtllm_request_success_total (Counter) — Count of successfully processed requests by finish reason

    • Labels: model_name, engine_type, finished_reason

  • trtllm_e2e_request_latency_seconds (Histogram) — End-to-end request latency (seconds)

    • Labels: model_name, engine_type

  • trtllm_time_to_first_token_seconds (Histogram) — Time to first token, TTFT (seconds)

    • Labels: model_name, engine_type

  • trtllm_time_per_output_token_seconds (Histogram) — Time per output token, TPOT (seconds)

    • Labels: model_name, engine_type

  • trtllm_request_queue_time_seconds (Histogram) — Time a request spends waiting in the queue (seconds)

    • Labels: model_name, engine_type

These metric names and availability are subject to change with TensorRT-LLM version updates.

TensorRT-LLM provides Prometheus metrics through the MetricsCollector class (see tensorrt_llm/metrics/collector.py).

Non-Prometheus Performance Metrics#

TensorRT-LLM provides extensive performance data beyond the basic Prometheus metrics. These are not currently exposed to Prometheus.

Available via Code References#

  • RequestPerfMetrics Structure: tensorrt_llm/executor/result.py - KV cache, timing, speculative decoding metrics

  • Engine Statistics: engine.llm.get_stats_async() - System-wide aggregate statistics

  • KV Cache Events: engine.llm.get_kv_cache_events_async() - Real-time cache operations

Example RequestPerfMetrics JSON Structure#

{
  "timing_metrics": {
    "arrival_time": 1234567890.123,
    "first_scheduled_time": 1234567890.135,
    "first_token_time": 1234567890.150,
    "last_token_time": 1234567890.300,
    "kv_cache_size": 2048576,
    "kv_cache_transfer_start": 1234567890.140,
    "kv_cache_transfer_end": 1234567890.145
  },
  "kv_cache_metrics": {
    "num_total_allocated_blocks": 100,
    "num_new_allocated_blocks": 10,
    "num_reused_blocks": 90,
    "num_missed_blocks": 5
  },
  "speculative_decoding": {
    "acceptance_rate": 0.85,
    "total_accepted_draft_tokens": 42,
    "total_draft_tokens": 50
  }
}

Note: These structures are valid as of the date of this documentation but are subject to change with TensorRT-LLM version updates.

Implementation Details#

  • Prometheus Integration: Uses the MetricsCollector class from tensorrt_llm.metrics (see collector.py)

  • Dynamo Integration: Uses register_engine_metrics_callback() function with add_prefix="trtllm_"

  • Engine Configuration: return_perf_metrics set to True when --publish-events-and-metrics is enabled

  • Initialization: Metrics appear after TensorRT-LLM engine initialization completes

  • Metadata: MetricsCollector initialized with model metadata (model name, engine type)