Virtual GPU Software R450 for VMware vSphere Release Notes

Release information for all users of NVIDIA virtual GPU software and hardware on VMware vSphere.

1. Release Notes

These Release Notes summarize current status, information on validated platforms, and known issues with NVIDIA vGPU software and associated hardware on VMware vSphere.

1.1. NVIDIA vGPU Software Driver Versions

Each release in this release family of NVIDIA vGPU software includes a specific version of the NVIDIA Virtual GPU Manager, NVIDIA Windows driver, and NVIDIA Linux driver.

NVIDIA vGPU Software Version NVIDIA Virtual GPU Manager Version NVIDIA Windows Driver Version NVIDIA Linux Driver Version
11.13 450.248.03 454.23 450.248.02
11.12 450.236.03 454.14 450.236.01
11.11 450.216.04 454.02 450.216.04
11.10 450.216.04 453.94 450.216.04
11.9 450.203 453.64 450.203.02
11.8 450.191 453.51 450.191.01
11.7 450.172 453.37 450.172.01
11.6 450.156 453.23 450.156.00
11.5 450.142 453.10 450.142.00
11.4 450.124 452.96 450.119.03
11.3 450.102 452.77 450.102.04
11.2 450.89 452.57 450.89
11.1 450.80 452.39 450.80.02
11.0 450.55 451.48 450.51.05

For details of which VMware vSphere releases are supported, see Hypervisor Software Releases.

1.2. Compatibility Requirements for the NVIDIA vGPU Manager and Guest VM Driver

The releases of the NVIDIA vGPU Manager and guest VM drivers that you install must be compatible. If you install an incompatible guest VM driver release for the release of the vGPU Manager that you are using, the NVIDIA vGPU fails to load.
See VM running an incompatible NVIDIA vGPU guest driver fails to initialize vGPU when booted.
Note: This requirement does not apply to the NVIDIA vGPU software license server. All releases in this release family of NVIDIA vGPU software are compatible with all releases of the license server.

Compatible NVIDIA vGPU Manager and Guest VM Driver Releases

The following combinations of NVIDIA vGPU Manager and guest VM driver releases are compatible with each other.

  • NVIDIA vGPU Manager with guest VM drivers from the same release
  • NVIDIA vGPU Manager with guest VM drivers from different releases within the same major release branch
  • NVIDIA vGPU Manager from a later major release branch with guest VM drivers from the previous branch
Note:

When NVIDIA vGPU Manager is used with guest VM drivers from a different release within the same branch or from the previous branch, the combination supports only the features, hardware, and software (including guest OSes) that are supported on both releases.

For example, if vGPU Manager from release 11.13 is used with guest drivers from release 10.4, the combination does not support Windows 7 because NVIDIA vGPU software release 11.13 does not support Windows 7.

The following table lists the specific software releases that are compatible with the components in the NVIDIA vGPU software 11 major release branch.

NVIDIA vGPU Software Component Releases Compatible Software Releases
NVIDIA vGPU Manager 11.0 through 11.13
  • Guest VM driver releases 11.0 through 11.13
  • All guest VM driver 10.x releases
Guest VM drivers 11.0 through 11.13 NVIDIA vGPU Manager releases 11.0 through 11.13

Incompatible NVIDIA vGPU Manager and Guest VM Driver Releases

The following combinations of NVIDIA vGPU Manager and guest VM driver releases are incompatible with each other.

  • NVIDIA vGPU Manager from a later major release branch with guest VM drivers from two or more major releases before the release of the vGPU Manager
  • NVIDIA vGPU Manager from an earlier major release branch with guest VM drivers from a later branch

The following table lists the specific software releases that are incompatible with the components in the NVIDIA vGPU software 11 major release branch.

NVIDIA vGPU Software Component Releases Incompatible Software Releases
NVIDIA vGPU Manager 11.0 through 11.13 All guest VM driver releases 9.x and earlier
Guest VM drivers 11.0 through 11.13 All NVIDIA vGPU Manager releases 10.x and earlier

1.3. Updates in Release 11.13

New Features in Release 11.13

  • Security updates - see Security Bulletin: NVIDIA GPU Display Driver - June 2023, which is posted shortly after the release date of this software and is listed on the NVIDIA Product Security page
  • Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 11.13

  • Support for Red Hat Enterprise Linux 8.8 as a guest OS
  • Support for VMware Horizon 2303 (8.9)

Feature Support Withdrawn in Release 11.13

  • Red Hat Enterprise Linux 8.7 and 8.4 are no longer supported as a guest OS.

1.4. Updates in Release 11.12

New Features in Release 11.12

  • Security updates - see Security Bulletin: NVIDIA GPU Display Driver - March 2023, which is posted shortly after the release date of this software and is listed on the NVIDIA Product Security page
  • Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 11.12

  • Support for Windows 11 22H2 as a guest OS
  • Support for Windows 10 2022 Update (22H2) as a guest OS
  • Support for VMware Horizon 2212 (8.8)

1.5. Updates in Release 11.11

New Features in Release 11.11

  • Security updates - see Security Bulletin: NVIDIA GPU Display Driver - November 2022, which is updated shortly after the release date of this software and is listed on the NVIDIA Product Security page

1.6. Updates in Release 11.10

New Features in Release 11.10

  • Security updates - see Security Bulletin: NVIDIA GPU Display Driver - November 2022, which is posted shortly after the release date of this software and is listed on the NVIDIA Product Security page
  • Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 11.10

  • Support for Red Hat Enterprise Linux 8.7 as a guest OS
  • Support for VMware Horizon 2209 (8.7)

Feature Support Withdrawn in Release 11.10

Note: All versions of Microsoft Windows Server 2016 remain supported as a guest OS. The earlier statement that Microsoft Windows Server 2016 is no longer supported is incorrect.
  • VMware vSphere Hypervisor (ESXi) 6.7 and 6.5 are no longer supported.

1.7. Updates in Release 11.9

New Features in Release 11.9

  • Security updates - see Security Bulletin: NVIDIA GPU Display Driver - August 2022, which is posted shortly after the release date of this software and is listed on the NVIDIA Product Security page
  • Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 11.9

  • Support for VMware Horizon 2206 (8.6)

1.8. Updates in Release 11.8

New Features in Release 11.8

  • Security updates - see Security Bulletin: NVIDIA GPU Display Driver - May 2022, which is posted shortly after the release date of this software and is listed on the NVIDIA Product Security page
  • Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 11.8

  • Support for Red Hat Enterprise Linux 8.6 as a guest OS
  • Support for VMware Horizon 2203 (8.5)

Feature Support Withdrawn in Release 11.8

  • Red Hat Enterprise Linux 8.5 and 8.2 are no longer supported as a guest OS.

1.9. Updates in Release 11.7

New Features in Release 11.7

  • Security updates - see Security Bulletin: NVIDIA GPU Display Driver - February 2022, which is posted shortly after the release date of this software and is listed on the NVIDIA Product Security page
  • Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 11.7

  • Support for Red Hat Enterprise Linux 8.5 as a guest OS
  • Support for VMware Horizon 2111 (8.4)

Feature Support Withdrawn in Release 11.7

  • Red Hat Enterprise Linux 8.1 is no longer supported as a guest OS.
  • Red Hat Enterprise Linux 7.8 and 7.7 are no longer supported as a guest OS.

1.10. Updates in Release 11.6

New Features in Release 11.6

  • Security updates - see Security Bulletin: NVIDIA GPU Display Driver - October 2021, which is posted shortly after the release date of this software and is listed on the NVIDIA Product Security page
  • Miscellaneous bug fixes

1.11. Updates in Release 11.5

New Features in Release 11.5

Hardware and Software Support Introduced in Release 11.5

  • Support for VMware Horizon 2106 (8.3)

Feature Support Withdrawn in Release 11.5

  • Red Hat Enterprise Linux 8.3 is no longer supported as a guest OS.

1.12. Updates in Release 11.4

New Features in Release 11.4

Hardware and Software Support Introduced in Release 11.4

  • Support for Red Hat Enterprise Linux 8.4 as a guest OS
  • Support for the following releases of VMware Horizon:
    • VMware Horizon 2103 (8.2)
    • VMware Horizon 2012 (8.1)

1.13. Updates in Release 11.3

New Features in Release 11.3

Hardware and Software Support Introduced in Release 11.3

  • Support for Windows 10 October 2020 Update (20H2) as a guest OS

    Windows 10 May 2021 Update (21H1), which is a bug fix release for Windows 10 October 2020 Update (20H2), is also supported.

  • Support for Red Hat Enterprise Linux 8.3 as a guest OS

Feature Support Withdrawn in Release 11.3

  • Citrix Hypervisor 8.1 is no longer supported.
  • Red Hat Enterprise Linux 7.6 is no longer supported as a guest OS

1.14. Updates in Release 11.2

New Features in Release 11.2

  • Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 11.2

  • Support for VMware Horizon 7.13

Feature Support Withdrawn in Release 11.2

  • Red Hat Enterprise Linux 6.6 and CentOS 6.6 are no longer supported as a guest OS.

1.15. Updates in Release 11.1

New Features in Release 11.1

Hardware and Software Support Introduced in Release 11.1

  • Support for the following GPUs:
    • NVIDIA A100 PCIe 40GB
    • NVIDIA A100 HGX 40GB
  • Support for the Red Hat Enterprise Linux 7.9 as a guest OS

Feature Support Withdrawn in Release 11.1

  • Windows Server 2012 R2 is no longer supported as a guest OS with GPUs based on architectures after NVIDIA Turing™ architecture.

1.16. Updates in Release 11.0

New Features in Release 11.0

  • Cross-branch driver support

    This change allows a release of the Virtual GPU Manager from a later major release branch to be used with the NVIDIA vGPU software graphics drivers for the guest VMs from the previous branch.

  • Licensing grace period for unlicensed virtual GPUs and physical GPUs

    An unlicensed virtual GPU or physical GPU initially operates at full capability but its performance is degraded over time if a license is not obtained.

  • Miscellaneous bug fixes

Hardware and Software Support Introduced in Release 11.0

  • Support for Windows 10 May 2020 Update (2004) as a guest OS
  • Support for Ubuntu 20.04 LTS as a guest OS
  • Support for VMware Horizon 2006 (8.0)

Feature Support Withdrawn in Release 11.0

  • The following guest OS releases are no longer supported:
    • Windows Server 2012
    • Windows Server 2008 R2
    • Windows 8.1
    • Windows 8
    • Windows 7

2. Validated Platforms

This release family of NVIDIA vGPU software provides support for several NVIDIA GPUs on validated server hardware platforms, VMware vSphere hypervisor software versions, and guest operating systems. It also supports the version of NVIDIA CUDA Toolkit that is compatible with R450 drivers.

2.1. Supported NVIDIA GPUs and Validated Server Platforms

This release of NVIDIA vGPU software on VMware vSphere provides support for several NVIDIA GPUs running on validated server hardware platforms. For a list of validated server platforms, refer to NVIDIA GRID Certified Servers.

The supported products for each type of NVIDIA vGPU software deployment depend on the GPU.

GPUs Based on the NVIDIA Ampere Architecture

Note: vSGA is not supported on GPUs based on the NVIDIA Ampere architecture.
GPU Supported NVIDIA vGPU Software Products1, 2, 3, 4
Time-Sliced NVIDIA vGPU MIG-Backed NVIDIA vGPU GPU Pass Through
Since 11.1: NVIDIA A100 PCIe 40GB N/A N/A vCS
Since 11.1: NVIDIA A100 HGX 40GB N/A N/A vCS

GPUs Based on the NVIDIA Turing™ Architecture

Note: vSGA is not supported on GPUs based on the NVIDIA Turing architecture.
GPU Supported NVIDIA vGPU Software Products1, 2, 3, 4
Time-Sliced NVIDIA vGPU MIG-Backed NVIDIA vGPU GPU Pass Through
Tesla T4
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications
Quadro RTX 60005
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications
Quadro RTX 6000 passive5
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications
Quadro RTX 8000 5
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications
Quadro RTX 8000 passive5
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications

GPUs Based on the NVIDIA Volta Architecture

Note: vSGA is not supported on GPUs based on the NVIDIA Volta architecture.
GPU Supported NVIDIA vGPU Software Products1, 2, 3, 4
Time-Sliced NVIDIA vGPU MIG-Backed NVIDIA vGPU GPU Pass Through
Tesla V100 SXM2
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications
Tesla V100 SXM2 32GB
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications
Tesla V100 PCIe
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications
Tesla V100 PCIe 32GB
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications
Tesla V100S PCIe 32GB
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications
Tesla V100 FHHL
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications

GPUs Based on the NVIDIA Pascal™ Architecture

Note: vSGA, vMotion with vGPU, and suspend-resume with vGPU are not supported on any variant of the Tesla P100 GPU.
GPU Supported NVIDIA vGPU Software Products1, 2, 3, 4
Time-Sliced NVIDIA vGPU MIG-Backed NVIDIA vGPU GPU Pass Through
Tesla P4
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications
Tesla P6
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications
Tesla P40
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications
Tesla P100 PCIe 16 GB
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications
Tesla P100 SXM2 16 GB
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications
Tesla P100 PCIe 12GB
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • vCS
  • Quadro vDWS
  • GRID Virtual Applications

GPUs Based on the NVIDIA Maxwell™ Graphic Architecture

Note:NVIDIA Virtual Compute Server (vCS) is not supported on GPUs based on the NVIDIA Maxwell graphic architecture.
GPU Supported NVIDIA vGPU Software Products1, 2, 3, 4
Time-Sliced NVIDIA vGPU MIG-Backed NVIDIA vGPU GPU Pass Through
Tesla M6
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • Quadro vDWS
  • GRID Virtual Applications
Tesla M10
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • Quadro vDWS
  • GRID Virtual Applications
Tesla M60
  • Quadro vDWS
  • GRID Virtual PC
  • GRID Virtual Applications
N/A
  • Quadro vDWS
  • GRID Virtual Applications
Note:

Tesla M60 and M6 GPUs support compute mode and graphics mode. NVIDIA vGPU requires GPUs that support both modes to operate in graphics mode.

Recent Tesla M60 GPUs and M6 GPUs are supplied in graphics mode. However, your GPU might be in compute mode if it is an older Tesla M60 GPU or M6 GPU, or if its mode has previously been changed.

To configure the mode of Tesla M60 and M6 GPUs, use the gpumodeswitch tool provided with NVIDIA vGPU software releases.

Even in compute mode, Tesla M60 and M6 GPUs do not support NVIDIA Virtual Compute Server vGPU types.

Requirements for Using C-Series vCS vGPUs

Because C-Series vCS vGPUs have large BAR memory settings, using these vGPUs has some restrictions on VMware ESXi:

Requirements for Using vGPU on GPUs Requiring 64 GB or More of MMIO Space with Large-Memory VMs

Some GPUs require 64 GB or more of MMIO space. When a vGPU on a GPU that requires 64 GB or more of MMIO space is assigned to a VM with 32 GB or more of memory on ESXi , the VM’s MMIO space must be increased to the amount of MMIO space that the GPU requires. For more information, see:

With ESXi 6.7 or later, no extra configuration is needed.

The following table lists the GPUs that require 64 GB or more of MMIO space and the amount of MMIO space that each GPU requires.

GPU MMIO Space Required
NVIDIA A100 40GB (all variants) 128 GB
Quadro RTX 6000 Passive 64 GB
Quadro RTX 8000 Passive 64 GB
Tesla P6 64 GB
Tesla P40 64 GB
Tesla P100 (all variants) 64 GB
Tesla V100 (all variants) 64 GB

Requirements for Using GPUs Requiring Large MMIO Space in Pass-Through Mode

  • The following GPUs require 32 GB of MMIO space in pass-through mode:
    • Tesla V100 (all 16GB variants)
    • Tesla P100 (all variants)
    • Tesla P6
  • The following GPUs require 64 GB of MMIO space in pass-through mode.
    • Quadro RTX 8000 passive
    • Quadro RTX 6000 passive
    • Tesla V100 (all 32GB variants)
    • Tesla P40
  • Pass through of GPUs with large BAR memory settings has some restrictions on VMware ESXi:
    • The guest OS must be a 64-bit OS.
    • 64-bit MMIO must be enabled for the VM.
    • If the total BAR1 memory exceeds 256 Mbytes, EFI boot must be enabled for the VM.
      Note: To determine the total BAR1 memory, run nvidia-smi -q on the host.
    • The guest OS must be able to be installed in EFI boot mode.
    • The Tesla V100, Tesla P100, and Tesla P6 require ESXi 6.0 Update 1 and later, or ESXi 6.5 and later.
    • Because it requires 64 GB of MMIO space, the Tesla P40 requires ESXi 6.0 Update 3 and later, or ESXi 6.5 and later.

      As a result, the VM’s MMIO space must be increased to 64 GB as explained in VMware Knowledge Base Article: VMware vSphere VMDirectPath I/O: Requirements for Platforms and Devices (2142307).

Requirements for Assigning Multiple GPUs in Pass-Through Mode to a Single VM

If you are assigning multiple GPUs in pass-through mode to a single VM, ensure that you allocate enough MMIO space to the VM for all the GPUs.

  1. Calculate the amount of MMIO space that is required for all the GPUs that you want to assign in pass-through mode to the VM.

    1. On the hypervisor host, get the total BAR1 memory usage for each GPU.

      nvidia-smi -q
      ==============NVSMI LOG==============
      
      Timestamp                                 : Mon Jul 17 18:36:45 2023
      Driver Version                            : 450.248.03
      CUDA Version                              :  11.0
      
      Attached GPUs                             : 4
      GPU 00000000:01:00.0
      ...
         BAR1 Memory Usage
              Total                             : 128 GiB
      ...

      In this example, the total BAR1 memory usage for each GPU is 128 GiB.

    2. Multiply the total BAR1 memory usage for each GPU by the number of GPUs that you are assigning in pass-through mode to the VM.

      For example, if you are assigning four GPUs to a VM, the amount of MMIO space that is required for all the GPUs is 4⨯128 GiB, which equals 512 GiB.

  2. Under the VM settings, choose VM Options > Advanced and set pciPassthru.use64bitMMIO="TRUE".

  3. Allocate the required amount of MMIO space to the VM.

    pciPassthru.64bitMMIOSizeGB = "mmio-space-in-gb"
    mmio-space-in-gb
    The required amount of MMIO space in GiB that you calculated previously. For example, if you are assigning four GPUs to a VM that each use a total of 128 GiB of BAR1 memory, the amount of MMIO space that is required for all the GPUs is 512 GiB.
    pciPassthru.64bitMMIOSizeGB = "512"

Linux Only: Error Messages for Misconfigured GPUs Requiring Large MMIO Space

In a Linux VM, if the requirements for using C-Series vCS vGPUs or GPUs requiring large MMIO space in pass-through mode are not met, the following error messages are written to the VM's dmesg log during installation of the NVIDIA vGPU software graphics driver:

NVRM: BAR1 is 0M @ 0x0 (PCI:0000:02:02.0)
[  90.823015] NVRM: The system BIOS may have misconfigured your GPU.
[  90.823019] nvidia: probe of 0000:02:02.0 failed with error -1
[  90.823031] NVRM: The NVIDIA probe routine failed for 1 device(s).

2.2. Hypervisor Software Releases

Supported VMware vSphere Hypervisor (ESXi) Releases

This release is supported on the VMware vSphere Hypervisor (ESXi) releases listed in the table.

Note:

Support for NVIDIA vGPU software requires the Enterprise Plus Edition of VMware vSphere Hypervisor (ESXi). For details, see VMware vSphere Edition Comparison (PDF).

Updates to a base release of VMware vSphere Hypervisor (ESXi) are compatible with the base release and can also be used with this version of NVIDIA vGPU software unless expressly stated otherwise.

VMware has officially declared vSphere 6.5.x and vSphere 6.7.x as End of General Support starting from October 15, 2022. As a result, NVIDIA vGPU software for these vSphere releases will have no new features, performance enhancements, bug fixes, or security updates. Technical support remains available for these vSphere releases with NVIDIA vGPU software releases 11.0-11.9.

Software Release Supported Notes
VMware vSphere Hypervisor (ESXi) 7.0 7.0 and compatible updates

All NVIDIA GPUs that support NVIDIA vGPU software are supported.

Since 11.1: The following GPUs are supported in GPU pass through mode only and are not supported in any mode on NVIDIA vGPU software 11.0:

  • NVIDIA A100 PCIe 40GB
  • NVIDIA A100 HGX 40GB
11.0-11.9 only: VMware vSphere Hypervisor (ESXi) 6.7 6.7 and compatible updates

All NVIDIA GPUs that support NVIDIA vGPU software are supported.

Since 11.1: The following GPUs are supported in GPU pass through mode only and are not supported in any mode on NVIDIA vGPU software 11.0:

  • NVIDIA A100 PCIe 40GB
  • NVIDIA A100 HGX 40GB

Starting with release 6.7 U3, the assignment of multiple vGPUs to a single VM is supported.

Starting with release 6.7 U1, vMotion with vGPU and suspend and resume with vGPU are supported on suitable GPUs as listed in Supported NVIDIA GPUs and Validated Server Platforms.

Release 6.7 supports only suspend and resume with vGPU. vMotion with vGPU is not supported on release 6.7.

11.0-11.9 only: VMware vSphere Hypervisor (ESXi) 6.5 6.5 and compatible updates

Requires VMware vSphere Hypervisor (ESXi) 6.5 patch P03 (ESXi650-201811002, build 10884925) or later from VMware

All NVIDIA GPUs that support NVIDIA vGPU software are supported.

Since 11.1: The following GPUs are supported in GPU pass through mode only and are not supported in any mode on NVIDIA vGPU software 11.0:

  • NVIDIA A100 PCIe 40GB
  • NVIDIA A100 HGX 40GB

The following features of NVIDIA vGPU software are not supported.

  • Assignment of multiple vGPUs to a single VM
  • Suspend-resume with vGPU
  • vMotion with vGPU
  • Live VMware snapshots with vGPU

Supported Management Software and Virtual Desktop Software Releases

This release supports the management software and virtual desktop software releases listed in the table.

Note: Updates to a base release of VMware Horizon and VMware vCenter Server are compatible with the base release and can also be used with this version of NVIDIA vGPU software unless expressly stated otherwise.
Software Releases Supported
VMware Horizon

Since 11.13: 2303 (8.9) and compatible updates

Since 11.12: 2212 (8.8) and compatible updates

Since 11.10: 2209 (8.7) and compatible updates

Since 11.9: 2206 (8.6) and compatible updates

Since 11.8: 2203 (8.5) and compatible updates

Since 11.7: 2111 (8.4) and compatible updates

Since 11.5: 2106 (8.3) and compatible updates

Since 11.4: 2103 (8.2) and compatible updates

Since 11.4: 2012 (8.1) and compatible updates

2006 (8.0) and compatible updates

Since 11.2: 7.13 and compatible 7.13.x updates

7.12 and compatible 7.12.x updates

7.11 and compatible 7.11.x updates

7.10 and compatible 7.10.x updates

7.9 and compatible 7.9.x updates

7.8 and compatible 7.8.x updates

7.7 and compatible 7.7.x updates

7.6 and compatible 7.6.x updates

7.5 and compatible 7.5.x updates

7.4 and compatible 7.4.x updates

7.3 and compatible 7.3.x updates

7.2 and compatible 7.2.x updates

7.1 and compatible 7.1.x updates

7.0 and compatible 7.0.x updates

VMware vCenter Server

7.0 and compatible updates

6.7 and compatible updates

6.5 and compatible updates

2.3. Guest OS Support

NVIDIA vGPU software supports several Windows releases and Linux distributions as a guest OS. The supported guest operating systems depend on the hypervisor software version.

Note:

Use only a guest OS release that is listed as supported by NVIDIA vGPU software with your virtualization software. To be listed as supported, a guest OS release must be supported not only by NVIDIA vGPU software, but also by your virtualization software. NVIDIA cannot support guest OS releases that your virtualization software does not support.

NVIDIA vGPU software supports only 64-bit guest operating systems. No 32-bit guest operating systems are supported.

2.3.1. Windows Guest OS Support

NVIDIA vGPU software supports only the 64-bit Windows releases listed in the table as a guest OS on VMware vSphere. The releases of VMware vSphere for which a Windows release is supported depend on whether NVIDIA vGPU or pass-through GPU is used.

Note:

If a specific release, even an update release, is not listed, it’s not supported.

VMware vMotion with vGPU and suspend-resume with vGPU are supported on supported Windows guest OS releases

Guest OS NVIDIA vGPU - VMware vSphere Releases Pass-Through GPU - VMware vSphere Releases
Windows Server 2019

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7, 6.5 update 2, 6.5 update 1

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7, 6.5 update 2, 6.5 update 1

Windows Server 2016 1709, 1607

7.0, 6.7, 6.5

7.0, 6.7, 6.5

Windows Server 2012 R2 (not supported on GPUs based on architectures after the NVIDIA Turing™ architecture)

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7, 6.5

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7, 6.5

Since 11.12: Windows 11 22H2

7.0

7.0

Since 11.12: Windows 10 2022 Update (22H2) and all Windows 10 releases supported by Microsoft up to and including this release

See Note (1)

7.0

7.0

11.3-11.11 only: Windows 10 May 2021 Update (21H1) and all Windows 10 releases supported by Microsoft up to and including this release

See Note (1)

11.10, 11.11 only: 7.0

11.3-11.9 only: 7.0, 6.7, 6.5

11.10, 11.11 only: 7.0

11.3-11.9 only: 7.0, 6.7, 6.5

11.0-11.2 only: Windows 10 May 2020 Update (2004) and all Windows 10 releases supported by Microsoft up to and including this release

See Note (1)

7.0, 6.7, 6.5

7.0, 6.7, 6.5

Note:
  1. The hardware-accelerated GPU scheduling feature introduced in Windows 10 May 2020 Update (2004) is not supported on GPUs based on the Maxwell architecture and is supported only in pass-through mode on GPUs based on later architectures.

2.3.2. Linux Guest OS Support

NVIDIA vGPU software supports only the Linux distributions listed in the table as a guest OS on VMware vSphere. The releases of VMware vSphere for which a Linux release is supported depend on whether NVIDIA vGPU or pass-through GPU is used.

Note:

If a specific release, even an update release, is not listed, it’s not supported.

VMware vMotion with vGPU and suspend-resume with vGPU are supported on supported Linux guest OS releases

Guest OS NVIDIA vGPU - VMware vSphere Releases Pass-Through GPU - VMware vSphere Releases
Since 11.13: Red Hat Enterprise Linux 8.8

7.0

7.0

11.10-11.12 only: Red Hat Enterprise Linux 8.7

7.0

7.0

Since 11.8: Red Hat Enterprise Linux 8.6

Since 11.10: 7.0

11.8, 11.9 only: 7.0, 6.7, 6.5 update 3

Since 11.10: 7.0

11.8, 11.9 only: 7.0, 6.7, 6.5 update 3

11.7 only: Red Hat Enterprise Linux 8.5

7.0, 6.7, 6.5 update 3

7.0, 6.7, 6.5 update 3

11.4-11.12 only: Red Hat Enterprise Linux 8.4

Since 11.10: 7.0

11.4-11.9 only: 7.0, 6.7, 6.5 update 3

Since 11.10: 7.0

11.4-11.9 only: 7.0, 6.7, 6.5 update 3

11.3, 11.4 only: Red Hat Enterprise Linux 8.3

7.0, 6.7, 6.5 update 3

7.0, 6.7, 6.5 update 3

11.0-11.7 only: Red Hat Enterprise Linux 8.2

7.0, 6.7, 6.5 update 3

7.0, 6.7, 6.5 update 3

11.0-11.6 only: Red Hat Enterprise Linux 8.1

7.0, 6.7, 6.5 update 3

7.0, 6.7, 6.5 update 3

11.7 only: CentOS Linux 8 (2111)

7.0, 6.7, 6.5 update 3

7.0, 6.7, 6.5 update 3

Since 11.4: CentOS Linux 8 (2105)

Since 11.10: 7.0

11.4-11.9 only: 7.0, 6.7, 6.5 update 3

Since 11.10: 7.0

11.4-11.9 only: 7.0, 6.7, 6.5 update 3

11.3, 11.4 only: CentOS Linux 8 (2011)

7.0, 6.7, 6.5 update 3

7.0, 6.7, 6.5 update 3

CentOS Linux 8 (2004)

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7, 6.5 update 3

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7, 6.5 update 3

11.0-11.6 only: CentOS Linux 8 (1911)

7.0, 6.7, 6.5 update 3

7.0, 6.7, 6.5 update 3

Since 11.7: Red Hat Enterprise Linux 7.9 and later compatible 7.x versions

Since 11.10: 7.0

11.7-11.9 only: 7.0, 6.7, 6.5

Since 11.10: 7.0

11.7-11.9 only: 7.0, 6.7, 6.5

11.3-11.6 only: Red Hat Enterprise Linux 7.7-7.9 and later compatible 7.x versions

7.0, 6.7, 6.5

7.0, 6.7, 6.5

11.1, 11.2 only: Red Hat Enterprise Linux 7.6-7.9 and later compatible 7.x versions

7.0, 6.7, 6.5

7.0, 6.7, 6.5

11.0 only: Red Hat Enterprise Linux 7.6-7.8 and later compatible 7.x versions

7.0, 6.7, 6.5

7.0, 6.7, 6.5

CentOS 7.6-7.8 and later compatible 7.x versions

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7, 6.5

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7, 6.5

11.0, 11.1 only: Red Hat Enterprise Linux 6.6 and later compatible 6.x versions

7.0, 6.7, 6.5

7.0, 6.7, 6.5

11.0, 11.1 only: CentOS 6.6 and later compatible 6.x versions

7.0, 6.7, 6.5

7.0, 6.7, 6.5

Ubuntu 20.04 LTS

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7 update 1

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7 update 1

Ubuntu 18.04 LTS

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7, 6.5

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7, 6.5

Ubuntu 16.04 LTS

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7, 6.5

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7, 6.5

Ubuntu 14.04 LTS

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7, 6.5

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7, 6.5

SUSE Linux Enterprise Server 12 SP3

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7, 6.5

Since 11.10: 7.0

11.0-11.9 only: 7.0, 6.7, 6.5

2.4. NVIDIA CUDA Toolkit Version Support

The releases in this release family of NVIDIA vGPU software support NVIDIA CUDA Toolkit 11.0.

To build a CUDA application, the system must have the NVIDIA CUDA Toolkit and the libraries required for linking. For details of the components of NVIDIA CUDA Toolkit, refer to CUDA Toolkit 11.0 Release Notes for Windows, Linux, and Mac OS.

To run a CUDA application, the system must have a CUDA-enabled GPU and an NVIDIA display driver that is compatible with the NVIDIA CUDA Toolkit release that was used to build the application. If the application relies on dynamic linking for libraries, the system must also have the correct version of these libraries.

For more information about NVIDIA CUDA Toolkit, refer to CUDA Toolkit 11.0 Documentation.

Note:

If you are using NVIDIA vGPU software with CUDA on Linux, avoid conflicting installation methods by installing CUDA from a distribution-independent runfile package. Do not install CUDA from a distribution-specific RPM or Deb package.

To ensure that the NVIDIA vGPU software graphics driver is not overwritten when CUDA is installed, deselect the CUDA driver when selecting the CUDA components to install.

For more information, see NVIDIA CUDA Installation Guide for Linux.

2.5. vGPU Migration Support

vGPU migration, which includes vMotion and suspend-resume, is supported only on a subset of supported GPUs, VMware vSphere Hypervisor (ESXi) releases, and guest operating systems.

Supported GPUs

  • Tesla M6
  • Tesla M10
  • Tesla M60
  • Tesla P4
  • Tesla P6
  • Tesla P40
  • Tesla V100 SXM2
  • Tesla V100 SXM2 32GB
  • Tesla V100 PCIe
  • Tesla V100 PCIe 32GB
  • Tesla V100S PCIe 32GB
  • Tesla V100 FHHL
  • Tesla T4
  • Quadro RTX 6000
  • Quadro RTX 6000 passive
  • Quadro RTX 8000
  • Quadro RTX 8000 passive
Note: A VM configured with a C-series vGPU on a Quadro RTX 8000 passive or Quadro RTX 6000 passive GPU cannot be migrated between a host that is running a vGPU manager from an NVIDIA vGPU software 11 release and a host running a vGPU manager from an NVIDIA vGPU software 10 release.

Supported VMware vSphere Hypervisor (ESXi) Releases

  • Release 7.0 and compatible updates support vMotion with vGPU and suspend-resume with vGPU.
  • 11.0-11.9 only: Release 6.7 U1 and compatible updates support vMotion with vGPU and suspend-resume with vGPU.
  • 11.0-11.9 only: Release 6.7 supports only suspend-resume with vGPU.
  • Releases earlier than 6.7 do not support any form of vGPU migration.

Supported Guest OS Releases

Windows and Linux.

Known Issues with vGPU Migration Support

Use Case Affected GPUs Issue
Migration to or from a host running an NVIDIA vGPU software 11 release before 11.6 Tesla T4 VM hangs after vGPU migration from a host running a vGPU manager 11 release to a host running a vGPU manager 13 release
  • Migration from a host running NVIDIA vGPU software 11.3 to a host running a different release
  • Migration to a host running NVIDIA vGPU software 11.3 from a host running a different release
Tesla T4 Migrating a VM with a Tesla T4 vGPU between a host running NVIDIA vGPU software 11.3 and a host running a different release fails
Migration from a host that is running a vGPU manager 11 release to a host that is running a vGPU manager 13 release.
  • Tesla T4
  • Tesla V100
Linux VM hangs after vGPU migration to a host running a newer vGPU manager version
Migration to or from a host running an NVIDIA vGPU software 11 release GPUs based on the NVIDIA Volta™ architecture Desktop session freezes when a VM is migrated to or from a host running an NVIDIA vGPU software 11 release
  • Migration from a host that is running a vGPU manager 11 release to a host that is running a vGPU manager 13 release
  • Migration from a host that is running a vGPU manager 13 release to a host that is running a vGPU manager 11 release
  • Quadro RTX6000
  • Quadro RTX6000 passive
  • Quadro RTX8000
  • Quadro RTX8000 passive
Hypervisor host and guest VM become unstable during migration between hosts running vGPU manager 11 and 13 releases
Migration between hosts with different ECC memory configuration All GPUs that support vGPU migration Migration of VMs configured with vGPU stops before the migration is complete

2.6. Multiple vGPU Support

To support applications and workloads that are compute or graphics intensive, multiple vGPUs can be added to a single VM. The assignment of more than one vGPU to a VM is supported only on a subset of vGPUs and VMware vSphere Hypervisor (ESXi) releases.

Supported vGPUs

Only Q-series and C-series vGPUs that are allocated all of the physical GPU's frame buffer are supported.

GPU Architecture Board vGPU
Turing Tesla T4 T4-16Q
T4-16C
Quadro RTX 6000 RTX6000-24Q
RTX6000-24C
Quadro RTX 6000 passive RTX6000P-24Q
RTX6000P-24C
Quadro RTX 8000 RTX8000-48Q
RTX8000-48C
Quadro RTX 8000 passive RTX8000P-48Q
RTX8000P-48C
Volta Tesla V100 SXM2 32GB V100DX-32Q
V100D-32C
Tesla V100 PCIe 32GB V100D-32Q
V100D-32C
Tesla V100S PCIe 32GB V100S-32Q
V100S-32C
Tesla V100 SXM2 V100X-16Q
V100X-16C
Tesla V100 PCIe V100-16Q
V100-16C
Tesla V100 FHHL V100L-16Q
V100L-16C
Pascal Tesla P100 SXM2 P100X-16Q
P100X-16C
Tesla P100 PCIe 16GB P100-16Q
P100-16C
Tesla P100 PCIe 12GB P100C-12Q
P100C-12C
Tesla P40 P40-24Q
P40-24C
Tesla P6 P6-16Q
P6-16C
Tesla P4 P4-8Q
P4-8C
Maxwell Tesla M60 M60-8Q
Tesla M10 M10-8Q
Tesla M6 M6-8Q

Maximum vGPUs per VM

NVIDIA vGPU software supports up to a maximum of four vGPUs per VM on VMware vSphere Hypervisor (ESXi).

Supported Hypervisor Releases

VMware vSphere Hypervisor (ESXi) 7.0 and 6.7 U3 and later compatible updates only.

If you upgraded to VMware vSphere 6.7 Update 3 from an earlier version and are using VMs that were created with that version, change the VM compatibility to vSphere 6.7 Update 2 and later. For details, see Virtual Machine Compatibility in the VMware documentation.

2.7. Peer-to-Peer CUDA Transfers over NVLink Support

Peer-to-peer CUDA transfers enable device memory between vGPUs on different GPUs that are assigned to the same VM to be accessed from within the CUDA kernels. NVLink is a high-bandwidth interconnect that enables fast communication between such vGPUs. Peer-to-Peer CUDA transfers over NVLink are supported only on a subset of vGPUs, VMware vSphere Hypervisor (ESXi) releases, and guest OS releases.

Supported vGPUs

Only Q-series and C-series vGPUs that are allocated all of the physical GPU's frame buffer on physical GPUs that support NVLink are supported.

GPU Architecture Board vGPU
Turing Quadro RTX 6000 RTX6000-24Q
RTX6000-24C
Quadro RTX 6000 passive RTX6000P-24Q
RTX6000P-24C
Quadro RTX 8000 RTX8000-48Q
RTX8000-48C
Quadro RTX 8000 passive RTX8000P-48Q
RTX8000P-48C
Volta Tesla V100 SXM2 32GB V100DX-32Q
V100DX-32C
Tesla V100 SXM2 V100X-16Q
V100X-16C
Pascal Tesla P100 SXM2 P100X-16Q
P100X-16C

Supported Hypervisor Releases

Peer-to-Peer CUDA Transfers over NVLink are supported on all hypervisor releases that support the assignment of more than one vGPU to a VM. For details, see Multiple vGPU Support.

Supported Guest OS Releases

Linux only. Peer-to-Peer CUDA Transfers over NVLink are not supported on Windows.

Limitations

  • Only direct connections are supported. NVSwitch is not supported.
  • PCIe is not supported.
  • SLI is not supported.

3. Known Product Limitations

Known product limitations for this release of NVIDIA vGPU software are described in the following sections.

3.1. NVENC does not support resolutions greater than 4096×4096

Description

The NVIDIA hardware-based H.264 video encoder (NVENC) does not support resolutions greater than 4096×4096. This restriction applies to all NVIDIA GPU architectures and is imposed by the GPU encoder hardware itself, not by NVIDIA vGPU software. The maximum supported resolution for each encoding scheme is listed in the documentation for NVIDIA Video Codec SDK. This limitation affects any remoting tool where H.264 encoding is used with a resolution greater than 4096×4096. Most supported remoting tools fall back to software encoding in such scenarios.

Workaround

If your GPU is based on a GPU architecture later than the NVIDIA Maxwell® architecture, use H.265 encoding. H.265 is more efficient than H.264 encoding and has a maximum resolution of 8192×8192. On GPUs based on the NVIDIA Maxwell architecture, H.265 has the same maximum resolution as H.264, namely 4096×4096.

Note: Resolutions greater than 4096×4096 are supported only by the H.265 decoder that 64-bit client applications use. The H.265 decoder that 32-bit applications use supports a maximum resolution of 4096×4096.

Because the client-side Workspace App on Windows is a 32-bit application, resolutions greater than 4096×4096 are not supported for Windows clients of Citrix Virtual Apps and Desktops. Therefore, if you are using a Windows client with Citrix Virtual Apps and Desktops, ensure that you are using H.264 hardware encoding with the default Use video codec for compression Citrix graphics policy setting, namely Actively Changing Regions. This policy setting encodes only actively changing regions of the screen (for example, a window in which a video is playing). Provided that the number of pixels along any edge of the actively changing region does not exceed 4096, H.264 encoding is offloaded to the NVENC hardware encoder.

3.2. Issues occur when the channels allocated to a vGPU are exhausted

Description

Issues occur when the channels allocated to a vGPU are exhausted and the guest VM to which the vGPU is assigned fails to allocate a channel to the vGPU. A physical GPU has a fixed number of channels and the number of channels allocated to each vGPU is inversely proportional to the maximum number of vGPUs allowed on the physical GPU.

When the channels allocated to a vGPU are exhausted and the guest VM fails to allocate a channel, the following errors are reported on the hypervisor host or in an NVIDIA bug report:

Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0): Guest attempted to allocate channel above its max channel limit 0xfb
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0): VGPU message 6 failed, result code: 0x1a
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0):         0xc1d004a1, 0xff0e0000, 0xff0400fb, 0xc36f,
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0):         0x1, 0xff1fe314, 0xff1fe038, 0x100b6f000, 0x1000,
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0):         0x80000000, 0xff0e0200, 0x0, 0x0, (Not logged),
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0):         0x1, 0x0
Jun 26 08:01:25 srvxen06f vgpu-3[14276]: error: vmiop_log: (0x0): , 0x0

Workaround

Use a vGPU type with more frame buffer, thereby reducing the maximum number of vGPUs allowed on the physical GPU. As a result, the number of channels allocated to each vGPU is increased.

3.3. Total frame buffer for vGPUs is less than the total frame buffer on the physical GPU

Some of the physical GPU's frame buffer is used by the hypervisor on behalf of the VM for allocations that the guest OS would otherwise have made in its own frame buffer. The frame buffer used by the hypervisor is not available for vGPUs on the physical GPU. In NVIDIA vGPU deployments, frame buffer for the guest OS is reserved in advance, whereas in bare-metal deployments, frame buffer for the guest OS is reserved on the basis of the runtime needs of applications.

If error-correcting code (ECC) memory is enabled on a physical GPU that does not have HBM2 memory, the amount of frame buffer that is usable by vGPUs is further reduced. All types of vGPU are affected, not just vGPUs that support ECC memory.

On all GPUs that support ECC memory and, therefore, dynamic page retirement, additional frame buffer is allocated for dynamic page retirement. The amount that is allocated is inversely proportional to the maximum number of vGPUs per physical GPU. All GPUs that support ECC memory are affected, even GPUs that have HBM2 memory or for which ECC memory is disabled.

The approximate amount of frame buffer that NVIDIA vGPU software reserves can be calculated from the following formula:

max-reserved-fb = vgpu-profile-size-in-mb÷16 + 16 + ecc-adjustments + page-retirement-allocation + compression-adjustment

max-reserved-fb
The maximum total amount of reserved frame buffer in Mbytes that is not available for vGPUs.
vgpu-profile-size-in-mb
The amount of frame buffer in Mbytes allocated to a single vGPU. This amount depends on the vGPU type. For example, for the T4-16Q vGPU type, vgpu-profile-size-in-mb is 16384.
ecc-adjustments
The amount of frame buffer in Mbytes that is not usable by vGPUs when ECC is enabled on a physical GPU that does not have HBM2 memory.
  • If ECC is enabled on a physical GPU that does not have HBM2 memory ecc-adjustments is fb-without-ecc/16, which is equivalent to 64 Mbytes for every Gbyte of frame buffer assigned to the vGPU. fb-without-ecc is total amount of frame buffer with ECC disabled.
  • If ECC is disabled or the GPU has HBM2 memory, ecc-adjustments is 0.
page-retirement-allocation
The amount of frame buffer in Mbytes that is reserved for dynamic page retirement.
  • On GPUs based on the NVIDIA Maxwell GPU architecture, page-retirement-allocation = 4÷max-vgpus-per-gpu.
  • On GPUs based on NVIDIA GPU architectures after the Maxwell architecture, page-retirement-allocation = 128÷max-vgpus-per-gpu
max-vgpus-per-gpu
The maximum number of vGPUs that can be created simultaneously on a physical GPU. This number varies according to the vGPU type. For example, for the T4-16Q vGPU type, max-vgpus-per-gpu is 1.
compression-adjustment

The amount of frame buffer in Mbytes that is reserved for the higher compression overhead in vGPU types with 12 Gbytes or more of frame buffer on GPUs based on the Turing architecture.

compression-adjustment depends on the vGPU type as shown in the following table.

vGPU Type Compression Adjustment (MB)

T4-16Q

T4-16C

T4-16A

28

RTX6000-12Q

RTX6000-12C

RTX6000-12A

32

RTX6000-24Q

RTX6000-24C

RTX6000-24A

104

RTX6000P-12Q

RTX6000P-12C

RTX6000P-12A

32

RTX6000P-24Q

RTX6000P-24C

RTX6000P-24A

104

RTX8000-12Q

RTX8000-12C

RTX8000-12A

32

RTX8000-16Q

RTX8000-16C

RTX8000-16A

64

RTX8000-24Q

RTX8000-24C

RTX8000-24A

96

RTX8000-48Q

RTX8000-48C

RTX8000-48A

238

RTX8000P-12Q

RTX8000P-12C

RTX8000P-12A

32

RTX8000P-16Q

RTX8000P-16C

RTX8000P-16A

64

RTX8000P-24Q

RTX8000P-24C

RTX8000P-24A

96

RTX8000P-48Q

RTX8000P-48C

RTX8000P-48A

238

For all other vGPU types, compression-adjustment is 0.

Note: In VMs running Windows Server 2012 R2, which supports Windows Display Driver Model (WDDM) 1.x, an additional 48 Mbytes of frame buffer are reserved and not available for vGPUs.

3.4. Issues may occur with graphics-intensive OpenCL applications on vGPU types with limited frame buffer

Description

Issues may occur when graphics-intensive OpenCL applications are used with vGPU types that have limited frame buffer. These issues occur when the applications demand more frame buffer than is allocated to the vGPU.

For example, these issues may occur with the Adobe Photoshop and LuxMark OpenCL Benchmark applications:

  • When the image resolution and size are changed in Adobe Photoshop, a program error may occur or Photoshop may display a message about a problem with the graphics hardware and a suggestion to disable OpenCL.
  • When the LuxMark OpenCL Benchmark application is run, XID error 31 may occur.

Workaround

For graphics-intensive OpenCL applications, use a vGPU type with more frame buffer.

3.6. vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on Windows 10

Description

To reduce the possibility of memory exhaustion, vGPU profiles with 512 Mbytes or less of frame buffer support only 1 virtual display head on a Windows 10 guest OS.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

  • Tesla M6-0B, M6-0Q
  • Tesla M10-0B, M10-0Q
  • Tesla M60-0B, M60-0Q

Workaround

Use a profile that supports more than 1 virtual display head and has at least 1 Gbyte of frame buffer.

3.7. NVENC requires at least 1 Gbyte of frame buffer

Description

Using the frame buffer for the NVIDIA hardware-based H.264/HEVC video encoder (NVENC) may cause memory exhaustion with vGPU profiles that have 512 Mbytes or less of frame buffer. To reduce the possibility of memory exhaustion, NVENC is disabled on profiles that have 512 Mbytes or less of frame buffer. Application GPU acceleration remains fully supported and available for all profiles, including profiles with 512 MBytes or less of frame buffer. NVENC support from both Citrix and VMware is a recent feature and, if you are using an older version, you should experience no change in functionality.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

  • Tesla M6-0B, M6-0Q
  • Tesla M10-0B, M10-0Q
  • Tesla M60-0B, M60-0Q

Workaround

If you require NVENC to be enabled, use a profile that has at least 1 Gbyte of frame buffer.

3.8. VM failures or crashes on servers with 1 TiB or more of system memory

Description

Support for vGPU and vSGA is limited to servers with less than 1 TiB of system memory. On servers with 1 TiB or more of system memory, VM failures or crashes may occur. For example, when Citrix Virtual Apps and Desktops is used with a Windows 7 guest OS, a blue screen crash may occur. However, support for vDGA is not affected by this limitation.

Depending on the version of NVIDIA vGPU software that you are using, the log file on the VMware vSphere host might also report the following errors:
2016-10-27T04:36:21.128Z cpu74:70210)DMA: 1935: Unable to perform element mapping: DMA mapping could not be completed
2016-10-27T04:36:21.128Z cpu74:70210)Failed to DMA map address 0x118d296c000 (0x4000): Can't meet address mask of the device..
2016-10-27T04:36:21.128Z cpu74:70210)NVRM: VM: nv_alloc_contig_pages: failed to allocate memory

This limitation applies only to systems with supported GPUs based on the Maxwell architecture: Tesla M6, Tesla M10, and Tesla M60.

Resolution

Limit the amount of system memory on the server to 1 TiB minus 16 GiB.

  1. Set memmapMaxRAMMB to 1032192, which is equal to 1048576 minus 16384.

    For detailed instructions, see Set Advanced Host Attributes in the VMware vSphere documentation.

  2. Reboot the server.

If the problem persists, contact your server vendor for the recommended system memory configuration with NVIDIA GPUs.

3.9. VM running an incompatible NVIDIA vGPU guest driver fails to initialize vGPU when booted

Description

A VM running a version of the NVIDIA guest VM driver that is incompatible with the current release of Virtual GPU Manager will fail to initialize vGPU when booted on a VMware vSphere platform running that release of Virtual GPU Manager.

A guest VM driver is incompatible with the current release of Virtual GPU Manager in either of the following situations:

  • The guest driver is from a release in a branch two or more major releases before the current release, for example release 9.4.

    In this situation, the VMware vSphere VM’s log file reports the following error:

    vmiop_log: (0x0): Incompatible Guest/Host drivers: Guest VGX version is older than the minimum version supported by the Host. Disabling vGPU.
  • The guest driver is from a later release than the Virtual GPU Manager.

    In this situation, the VMware vSphere VM’s log file reports the following error:

    vmiop_log: (0x0): Incompatible Guest/Host drivers: Guest VGX version is newer than the maximum version supported by the Host. Disabling vGPU.

In either situation, the VM boots in standard VGA mode with reduced resolution and color depth. The NVIDIA virtual GPU is present in Windows Device Manager but displays a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

Resolution

Install a release of the NVIDIA guest VM driver that is compatible with current release of Virtual GPU Manager.

3.10. Single vGPU benchmark scores are lower than pass-through GPU

Description

A single vGPU configured on a physical GPU produces lower benchmark scores than the physical GPU run in pass-through mode.

Aside from performance differences that may be attributed to a vGPU’s smaller frame buffer size, vGPU incorporates a performance balancing feature known as Frame Rate Limiter (FRL). On vGPUs that use the best-effort scheduler, FRL is enabled. On vGPUs that use the fixed share or equal share scheduler, FRL is disabled.

FRL is used to ensure balanced performance across multiple vGPUs that are resident on the same physical GPU. The FRL setting is designed to give good interactive remote graphics experience but may reduce scores in benchmarks that depend on measuring frame rendering rates, as compared to the same benchmarks running on a pass-through GPU.

Resolution

FRL is controlled by an internal vGPU setting. On vGPUs that use the best-effort scheduler, NVIDIA does not validate vGPU with FRL disabled, but for validation of benchmark performance, FRL can be temporarily disabled by adding the configuration parameter pciPassthru0.cfg.frame_rate_limiter in the VM’s advanced configuration options.

Note: This setting can only be changed when the VM is powered off.
  1. Select Edit Settings.
  2. In Edit Settings window, select the VM Options tab.
  3. From the Advanced drop-down list, select Edit Configuration.
  4. In the Configuration Parameters dialog box, click Add Row.
  5. In the Name field, type the parameter name pciPassthru0.cfg.frame_rate_limiter, in the Value field type 0, and click OK.

    Screen capture showing a dialog box that contains advanced VM configuration options

With this setting in place, the VM’s vGPU will run without any frame rate limit. The FRL can be reverted back to its default setting by setting pciPassthru0.cfg.frame_rate_limiter to 1 or by removing the parameter from the advanced settings.

3.11. VMs configured with large memory fail to initialize vGPU when booted

Description

When starting multiple VMs configured with large amounts of RAM (typically more than 32GB per VM), a VM may fail to initialize vGPU. In this scenario, the VM boots in VMware SVGA mode and doesn’t load the NVIDIA driver. The NVIDIA vGPU software GPU is present in Windows Device Manager but displays a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

The VMware vSphere VM’s log file contains these error messages:

vthread10|E105: NVOS status 0x29
vthread10|E105: Assertion Failed at 0x7620fd4b:179
vthread10|E105: 8 frames returned by backtrace
 ...
vthread10|E105: VGPU message 12 failed, result code: 0x29
...
vthread10|E105: NVOS status 0x8
vthread10|E105: Assertion Failed at 0x7620c8df:280
vthread10|E105: 8 frames returned by backtrace
...
vthread10|E105: VGPU message 26 failed, result code: 0x8

Resolution

vGPU reserves a portion of the VM’s framebuffer for use in GPU mapping of VM system memory. The reservation is sufficient to support up to 32GB of system memory, and may be increased to accommodate up to 64GB by adding the configuration parameter pciPassthru0.cfg.enable_large_sys_mem in the VM’s advanced configuration options

Note: This setting can only be changed when the VM is powered off.
  1. Select Edit Settings.
  2. In Edit Settings window, select the VM Options tab.
  3. From the Advanced drop-down list, select Edit Configuration.
  4. In the Configuration Parameters dialog box, click Add Row.
  5. In the Name field, type the parameter name pciPassthru0.cfg.enable_large_sys_mem, in the Value field type 1, and click OK.

With this setting in place, less GPU framebuffer is available to applications running in the VM. To accommodate system memory larger than 64GB, the reservation can be further increased by adding pciPassthru0.cfg.extra_fb_reservation in the VM’s advanced configuration options, and setting its value to the desired reservation size in megabytes. The default value of 64M is sufficient to support 64 GB of RAM. We recommend adding 2 M of reservation for each additional 1 GB of system memory. For example, to support 96 GB of RAM, set pciPassthru0.cfg.extra_fb_reservation to 128.

The reservation can be reverted back to its default setting by setting pciPassthru0.cfg.enable_large_sys_mem to 0, or by removing the parameter from the advanced settings.

4. Resolved Issues

Only resolved issues that have been previously noted as known issues or had a noticeable user impact are listed. The summary and description for each resolved issue indicate the effect of the issue on NVIDIA vGPU software before the issue was resolved.

Issues Resolved in Release 11.13

Bug ID Summary and Description
3596327

11.0-11.12 Only: Remote desktop connection is lost and the NVIDIA vGPU software graphics driver is unloaded

The remote desktop connection is lost and the NVIDIA vGPU software graphics driver is unloaded after an attempt to access a VM over RDP and VMware Horizon agent direct connect. After an attempt to log in again, a black screen is displayed.

Issues Resolved in Release 11.12

No resolved issues are reported in this release for VMware vSphere.

Issues Resolved in Release 11.11

No resolved issues are reported in this release for VMware vSphere.

Issues Resolved in Release 11.10

No resolved issues are reported in this release for VMware vSphere.

Issues Resolved in Release 11.9

No resolved issues are reported in this release for VMware vSphere.

Issues Resolved in Release 11.8

Bug ID Summary and Description
200756399

11.0-11.7 Only: Linux VM might fail to return a license after shutdown if the license server is specified by its name

If the license server is specified by its fully qualified domain name, a Linux VM might fail to return its license when the VM is shut down. This issue occurs if the nvidia-gridd service cannot resolve the fully qualified domain name of the license server because systemd-resolved.service is not available when the service attempts to return the license. When this issue occurs, the nvidia-gridd service writes the following message to the systemd journal:
General data transfer failure. Couldn't resolve host name
3465448

11.0-11.7 Only: Windows vGPU VM sometimes crashes after guest OS upgrade

When a VM that is configured with NVIDIA vGPU is rebooted after an OS upgrade from Windows 10 1909 to Windows 10 20H2, the VM sometimes crashes. This issue is caused by a NULL pointer exception in the Virtual GPU Manager plugin (libnvidia-vgx.so). This NULL pointer exception might also cause the VM to crash in other situations. When this issue occurs, error messages that indicate that the Virtual GPU Manager process crashed are written to the log file vmware.log on the hypervisor host.

200724807

11.0-11.7 Only: Memory leaks in the vGPU manager plugin cause the VM to hang

Applications running in a VM request memory to be allocated and freed by the vGPU manager plugin, which runs on the hypervisor host. When an application requests the vGPU manager plugin to free previously allocated memory, some of the memory is not freed. Some applications request memory more frequently than other applications. If such applications run for a long period of time, for example for two or more days, the failure to free all allocated memory might cause the hypervisor host to run out of memory. As a result, memory allocation for applications running in the VM might fail, causing the applications and, sometimes, the VM to hang.

Issues Resolved in Release 11.7

No resolved issues are reported in this release for VMware vSphere.

Issues Resolved in Release 11.6

No resolved issues are reported in this release for VMware vSphere.

Issues Resolved in Release 11.5

No resolved issues are reported in this release for VMware vSphere.

Issues Resolved in Release 11.4

Bug ID Summary and Description
3226853

11.0-11.3 Only: NVIDIA vGPU software graphics driver installation fails in Ubuntu guest VMs

Installation of the NVIDIA vGPU software graphics driver from a .run file fails in Ubuntu guest VMs that are running Linux kernel version 5.8 or later.

200700530

11.3 Only: Purple screen crash occurs after upgrade to the vGPU Manager in NVIDIA vGPU software 11.3

A purple screen crash occurs on the hypervisor host after an upgrade to the vGPU Manager in NVIDIA vGPU software 11.3. This issue affects only hosts that are equipped with Tesla T4 GPUs.

Issues Resolved in Release 11.3

Bug ID Summary and Description
200664572

11.0-11.2 Only: Sessions freeze randomly with XID errors 38, 43, 32, and 31

Issues such as a session freeze, black screen, application crash, or VM crash might randomly occur with VMs that are configured with a Tesla T4 vGPU. When these issues occur, XID error 38 followed by multiple instances of XID errors 43, 32, and 31 are written to the log files on the hypervisor host. This issue is caused by a regression in the NVIDIA firmware code for the Tesla T4 GPU and affects only VMs that are configured with a vGPU that resides on a Tesla T4 GPU.

Issues Resolved in Release 11.2

Bug ID Summary and Description
200658253

11.1 Only: Licensing event logs indicate license renewal from unavailable primary server

Licensing event logs for the guest VM indicate that a license is renewed from primary license server even when primary license server is unavailable and the license is renewed from the secondary server.

200663459

11.0, 11.1 Only: Device initialization fails on servers with 1 TiB or more of system memory

On servers with 1 TiB or more of system memory, device initialization fails because the buffer for flushing system memory cannot be allocated. The device initialization failure might also be accompanied by a purple-screen crash. This issue occurs because a driver regression caused the address of the buffer to be longer than the 40 bits of address space that the GPU hardware unit for flushing system memory can handle.

Issues Resolved in Release 11.1

Bug ID Summary and Description
200627445

11.0 Only: Remoting solution session freezes with VGPU message 21 failed and VGPU message 14 failed errors

The remoting solution session sometimes freezes while a window is being resized. For a Windows guest VM, the error message VGPU message 21 failed is written to the log file on the hypervisor host. For a Linux guest VM, the error messages VGPU message 21 failed and VGPU message 14 failed are written to the log file on the hypervisor host.

200626446

11.0 Only: Failure to allocate resources causes VM failures or crashes

Failure to allocate resources causes VM failures or crashes. When the error occurs, the error message NVOS status 0x19 is written to the log file on the hypervisor host. Depending on the resource and the underlying cause of the failure, VGPU message 52 failed, VGPU message 4 failed, VGPU message 21 failed, and VGPU message 10 failed might also be written to the log file on the hypervisor host.

3087984

11.0 Only: The NVIDIA license not present notification appears even for VMs for which the vGPU is licensed

After starting and logging on to a Windows VM that is configured with NVIDIA vGPU, users see the NVIDIA license not present notification even when the vGPU is already licensed. This notification is misleading and should be ignored. This issue occurs because the NVIDIA driver is not storing the correct NVIDIA vGPU software license state.

Issues Resolved in Release 11.0

Bug ID Summary and Description
200275925

Resolution is not updated after a VM acquires a license and is restarted

In a Red Enterprise Linux 7.3 guest VM, an increase in resolution from 1024×768 to 2560×1600 is not applied after a license is acquired and the gridd service is restarted. This issue occurs if the multimonitor parameter is added to the xorg.conf file.

2175888

Even when the scheduling policy is equal share, unequal GPU utilization is reported

When the scheduling policy is equal share, unequal GPU engine utilization can be reported for the vGPUs on the same physical GPU.

5. Known Issues

5.1. NVIDIA Control Panel crashes if a user session is disconnected and reconnected

Description

On all supported Windows Server guest OS releases, NVIDIA Control Panel crashes if a user session is disconnected and then reconnected while NVIDIA Control Panel is open.

Version

This issue affects all supported Windows Server guest OS releases.

Status

Open

Ref. #

4086605

5.2. 11.0-11.12 Only: Remote desktop connection is lost and the NVIDIA vGPU software graphics driver is unloaded

Description

The remote desktop connection is lost and the NVIDIA vGPU software graphics driver is unloaded after an attempt to access a VM over RDP and VMware Horizon agent direct connect. After an attempt to log in again, a black screen is displayed.

When this issue occurs, the following errors are written to the log files on the guest VM:
  • A timeout detection and recovery (TDR) error:
    vmiop_log: (0x0): Timeout occurred, reset initiated.
    vmiop_log: (0x0): TDR_DUMP:0x52445456 0x006907d0 0x000001cc 0x00000001
  • XID error 43:
    vmiop_log: (0x0): XID 43 detected on physical_chid
  • vGPU error 22:
    vmiop_log: (0x0): VGPU message 22 failed
  • Guest driver unloaded error:
    vmiop_log: (0x0): Guest driver unloaded!

Workaround

To recover from this issue, reboot the VM.

11.12 only: To prevent this issue from occurring, disable translation lookaside buffer (TLB) invalidation by setting the vGPU plugin parameter tlb_invalidate_enabled to 0.

Status

Resolved in NVIDIA vGPU software 11.13

Ref. #

3596327

5.3. Hypervisor host and guest VM become unstable during migration between hosts running vGPU manager 11 and 13 releases

Description

During migration between hosts running vGPU manager 11 and 13 releases, a purple screen crash occurs on the hypervisor host and the guest VM becomes unstable. This issue affects only migration between hosts with any variant of the Quadro RTX 6000 and Quadro RTX 8000 graphics cards.

Version

This issue affects migration between a host that is running a vGPU manager 11 release and a host that is running a vGPU manager 13 release. The issue affects migrations to and from the host that is running a vGPU manager 11 release.

This issue affects only hosts with the following graphics cards:
  • Quadro RTX6000
  • Quadro RTX6000 passive
  • Quadro RTX8000
  • Quadro RTX8000 passive

Status

Open:
  • For migration from a host that is running an NVIDIA vGPU software 13 release to a host that is running an NVIDIA vGPU software 11 release, this issue is still open.
  • For migration from a host that is running an NVIDIA vGPU software 11 release to a host that is running an NVIDIA vGPU software 13 release, this issue is resolved.

Ref. #

3446995

5.4. With multiple active sessions, NVIDIA Control Panel incorrectly shows that the system is unlicensed

Description

In an environment with multiple active desktop sessions, the Manage License page of NVIDIA Control Panel shows that a licensed system is unlicensed. However, the nvidia-smi command and the management interface of the NVIDIA vGPU software license server correctly show that the system is licensed. When an active session is disconnected and reconnected, the NVIDIA Display Container service crashes.

The Manage License page incorrectly shows that the system is unlicensed because of stale data in NVIDIA Control Panel in an environment with multiple sessions. The data is stale because NVIDIA Control Panel fails to get and update the settings for remote sessions when multiple sessions or no sessions are active in the VM. The NVIDIA Display Container service crashes when a session is reconnected because the session is not active at the moment of reconnection.

Status

Open

Ref. #

3761243

5.5. VP9 and AV1 decoding with web browsers are not supported on Microsoft Windows Server 2019

Description

VP9 and AV1 decoding with web browsers are not supported on Microsoft Windows Server 2019. This issue occurs because starting with Windows Server 2019, the required codecs are not included with the OS and are not available through the Microsoft Store app. As a result, hardware decoding is not available for viewing YouTube videos or using collaboration tools such as Google Meet in a web browser.

Version

This issue affects Microsoft Windows Server releases starting with Windows Server 2019.

Status

Not an NVIDIA bug

Ref. #

200756564

5.6. 11.0-11.7 Only: Linux VM might fail to return a license after shutdown if the license server is specified by its name

Description

If the license server is specified by its fully qualified domain name, a Linux VM might fail to return its license when the VM is shut down. This issue occurs if the nvidia-gridd service cannot resolve the fully qualified domain name of the license server because systemd-resolved.service is not available when the service attempts to return the license. When this issue occurs, the nvidia-gridd service writes the following message to the systemd journal:
General data transfer failure. Couldn't resolve host name

Status

Resolved in NVIDIA vGPU software 11.8

Ref. #

200756399

5.7. NVIDIA Control Panel is started only for the RDP user that logs on first

Description

On all supported Windows Server guest OS releases, NVIDIA Control Panel is started only for the RDP user that logs on first. Other users cannot start NVIDIA Control Panel. If more than one RDP user is logged on when NVIDIA Control Panel is started, it always opens in the session of the RDP user that logged on first, irrespective of which user started NVIDIA Control Panel. Furthermore, on Windows Server 2016, NVIDIA Control Panel crashes if a user session is disconnected and then reconnected while NVIDIA Control Panel is open.

Version

This issue affects all supported Windows Server guest OS releases.

Status

Open

Ref. #

3334310

5.8. 11.0-11.7 Only: Windows vGPU VM sometimes crashes after guest OS upgrade

Description

When a VM that is configured with NVIDIA vGPU is rebooted after an OS upgrade from Windows 10 1909 to Windows 10 20H2, the VM sometimes crashes. This issue is caused by a NULL pointer exception in the Virtual GPU Manager plugin (libnvidia-vgx.so). This NULL pointer exception might also cause the VM to crash in other situations. When this issue occurs, error messages that indicate that the Virtual GPU Manager process crashed are written to the log file vmware.log on the hypervisor host.

Status

Resolved in NVIDIA vGPU software 11.8

Ref. #

3465448

5.9. 11.0-11.7 Only: Memory leaks in the vGPU manager plugin cause the VM to hang

Description

Applications running in a VM request memory to be allocated and freed by the vGPU manager plugin, which runs on the hypervisor host. When an application requests the vGPU manager plugin to free previously allocated memory, some of the memory is not freed. Some applications request memory more frequently than other applications. If such applications run for a long period of time, for example for two or more days, the failure to free all allocated memory might cause the hypervisor host to run out of memory. As a result, memory allocation for applications running in the VM might fail, causing the applications and, sometimes, the VM to hang.

When memory allocation fails, the error messages that are written to the log file on the hypervisor host depend on the hypervisor.
  • For VMware vSphere ESXi, the following error messages are written to vmware.log:
    2021-10-05T04:57:35.547Z| vthread-2329002| E110: vmiop_log: Fail to create the buffer for translate pte rpc node
    
    2021-06-05T10:48:33.007Z| vcpu-3| E105: PANIC: Unrecoverable memory allocation failure
  • For Citrix Hypervisor and hypervisors based on Linux KVM, the following messages are written to the standard activity log in the /var/log directory (/var/log/messages or /var/log/syslog):
    Feb 15 09:27:48 bkrzxen1 kernel: [1278743.170072] Out of memory: Kill process 20464 (vgpu) score 9 or sacrifice child
    
    Feb 15 09:27:48 bkrzxen1 kernel: [1278743.170111] Killed process 20464 (vgpu) total-vm:305288kB, anon-rss:56508kB, file-rss:30828kB, shmem-rss:0kB
    
    Feb 15 09:27:48 bkrzxen1 kernel: [1278743.190484] oom_reaper: reaped process 20464 (vgpu), now anon-rss:0kB, file-rss:27748kB, shmem-rss:4kB".
    

Workaround

If an application or a VM hangs after a long period of usage, restart the VM every couple of days to prevent the hypervisor host from running out of memory.

Status

Resolved in NVIDIA vGPU software 11.8

Ref. #

200724807

5.10. nvidia-smi ignores the second NVIDIA vGPU device added to a Microsoft Windows Server 2016 VM

Description

After a second NVIDIA vGPU device is added to a Microsoft Windows Server 2016 VM, the device does not appear in the output from the nvidia-smi command. This issue occurs only if the VM is already running NVIDIA vGPU software for the existing NVIDIA vGPU device when the second device is added to the VM.

The nvidia-smi command cannot retrieve the guest driver version, license status, and accounting mode of the second NVIDIA vGPU device.
nvidia-smi vgpu --query
GPU 00000000:37:00.0
    Active vGPUs                      : 1
    vGPU ID                           : 3251695793
        VM ID                         : 3575923
        VM Name                       : SVR-Reg-W(P)-KuIn
        vGPU Name                     : GRID V100D-32Q
        vGPU Type                     : 185
        vGPU UUID                     : 29097249-2359-11b2-8a5b-8e896866496b
        Guest Driver Version          : 453.51
        License Status                : Licensed
        Accounting Mode               : Disabled
...
GPU 00000000:86:00.0
    Active vGPUs                      : 1
    vGPU ID                           : 3251695797
        VM ID                         : 3575923
        VM Name                       : SVR-Reg-W(P)-KuIn
        vGPU Name                     : GRID V100D-32Q
        vGPU Type                     : 185
        vGPU UUID                     : 2926dd83-2359-11b2-8b13-5f22f0f74801
        Guest Driver Version          : Not Available
        License Status                : N/A
        Accounting Mode               : N/A

Version

This issue affects only VMs that are running Microsoft Windows Server 2016 as a guest OS.

Workaround

To avoid this issue, configure the guest VM with both NVIDIA vGPU devices before installing the NVIDIA vGPU software graphics driver.

If you encounter this issue after the VM is configured, use one of the following workarounds:

  • Reinstall the NVIDIA vGPU software graphics driver.
  • Forcibly uninstall the Microsoft Basic Display Adapter and reboot the VM.
  • Upgrade the guest OS on the VM to Microsoft Windows Server 2019.

Status

Not an NVIDIA bug

Ref. #

3562801

5.11. Application or vGPU VM crashes when multiple application instances are launched

Description

When multiple application instances are launched on a legacy vGPU, the application or VM to which the vGPU is assigned crashes. A legacy NVIDIA vGPU does not support single root I/O virtualization (SR-IOV). This issue does not affect NVIDIA vGPUs that support SR-IOV.

The vGPUs that are affected by this issue depend on the release of NVIDIA vGPU software.

  • 11.0-11.2 only: This issue affects all legacy vGPUs, including vGPUs that are allocated all of the physical GPU's frame buffer.
  • Since 11.3: This issue affects only legacy vGPUs that are allocated only a fraction of the physical GPU's frame buffer.

The symptoms of this issue depend on the release of VMware vSphere Hypervisor (ESXi).

  • With VMware vSphere Hypervisor (ESXi) 7.0.3 and later releases, the application crashes but the guest VM remains accessible. When this issue occurs, the following error message is written to the vmware.log file:
    vmiop_log: (0x0): VGPU message 7 failed
  • With VMware vSphere Hypervisor (ESXi) releases before 7.0.3, the guest VMX process crashes. When this issue occurs, the following error message is written to the vmware.log file in the host VMFS datastore folder for the VM:
    E105: PANIC: PhysMem: creating too many Global lookups.

This issue occurs when the plugin for legacy NVIDIA vGPUs creates more BAR1 mappings than VMware vSphere Hypervisor (ESXi) allows a VM to create. These mappings depend on the number and type of applications running in the VM.

Since 11.8: Workaround

A workaround is available for the following GPUs, all of which have a large physical BAR1 memory size:
  • Quadro RTX 6000 Passive
  • Quadro RTX 8000 Passive
  • Tesla P6
  • Tesla P40
  • Tesla P100 (all variants)
  • Tesla V100 (all variants)
Note: This workaround is not available for other GPUs that are affected by this issue.

To employ this workaround, set the vGPU plugin parameter pciPassthru0.cfg.plugin_managed_bar1_va_override to 1.

Status

Open

Ref. #

200680865

5.12. Only one vGPU VM can be powered on with VMware vSphere Hypervisor (ESXi) 7.0.3

Description

Only one VM configured with NVIDIA vGPU can be powered with VMware vSphere Hypervisor (ESXi) 7.0.3. Any attempt to power on a second VM fails with the following error message:
Insufficient resources. At least one device (pcipassthru0) required for VM vm-name is not available on host. host-name

This issue occurs because the release of VMware vCenter Server is incompatible with VMware vSphere Hypervisor (ESXi) 7.0.3. Only VMware vCenter Server 7.0.3 is compatible with VMware vSphere Hypervisor (ESXi) 7.0.3.

Version

VMware vSphere Hypervisor (ESXi) 7.0.3

Workaround

Upgrade VMware vCenter Server to release 7.0.3 to match the release of VMware vSphere Hypervisor (ESXi).

Status

Not an NVIDIA bug

Ref. #

3419013

5.13. The reported NVENC frame rate is double the actual frame rate

Description

The frame rate in frames per second (FPS) for the NVIDIA hardware-based H.264/HEVC video encoder (NVENC) reported by the nvidia-smi encodersessions command and NVWMI is double the actual frame rate. Only the reported frame rate is incorrect. The actual encoding of frames is not affected.

This issue affects only Windows VMs that are configured with NVIDIA vGPU.

Status

Open

Ref. #

2997564

5.14. VM hangs after vGPU migration from a host running a vGPU manager 11 release to a host running a vGPU manager 13 release

Description

When a VM configured with a Tesla T4 vGPU is migrated from a host that is running a vGPU manager 11 release before 11.6 to a host that is running a vGPU manager 13 release, the VM hangs. When this issue occurs, XID error 31 is written to the log files on the destination hypervisor host.

Version

This issue affects migration from a host that is running a vGPU manager 11 release before 11.6, such as 11.4 or 11.5, to a host that is running a vGPU manager 13 release, such as 13.0 or 13.1.

Workaround

Upgrade the host that is running a vGPU manager 11 release to release 11.6 before attempting the migration.

Status

Open

5.15. Desktop session freezes when a VM is migrated to or from a host running an NVIDIA vGPU software 11 release

Description

The remote desktop session freezes when a VM is migrated to or from a host running an NVIDIA vGPU software 11 release. This issue affects only VMs configured with vGPUs on GPUs based on the NVIDIA Volta™ architecture.

When this issue occurs, the following error messages are written to the VMware vSphere VM’s log file on the destination host:

  • XID error 13
  • XID error 43

Version

The issue affects migrations to and from a host that is running an NVIDIA vGPU software 11 release.

Status

Open

Ref. #

200707632

5.16. Linux VM hangs after vGPU migration to a host running a newer vGPU manager version

Description

When a Linux VM configured with a Tesla V100 or Tesla T4 vGPU is migrated from a host that is running a vGPU manager 11 release before 11.6 to a host that is running a vGPU manager 13 release, the VM hangs. After the migration, the destination host and VM become unstable. When this issue occurs, XID error 31 is written to the log files on the destination hypervisor host.

Version

This issue affects migration from a host that is running a vGPU manager 11 release before 11.6 to a host that is running a vGPU manager 13 release.

Workaround

If the VM is configured with a Tesla T4 vGPU, perform the following sequence of steps before attempting the migration:

  1. Upgrade the host that is running a vGPU manager 11 release to release 11.6 or a later vGPU manager 11 release.
  2. Disconnect any remoting tool that is using NVENC.
Note: You cannot use this workaround for a VM that is configured with a Tesla V100 vGPU.

Status

Open

Ref. #

200691445

5.17. VM fails after a second vGPU is assigned to it

Description

After a second vGPU is added to a VM and the VM is restarted, the VM fails. NVIDIA vGPU software supports up to a maximum of four vGPUs per VM on VMware vSphere Hypervisor (ESXi).

When this issue occurs, the following messages are written to the log file on the hypervisor host:

2021-09-27T17:11:42.303Z| vthread-2105551| | I005: vmiop_log: (0x0): Start restoring vGPU state ...
2021-09-27T17:11:43.465Z| vcpu-0| | E002: vmiop_log: (0x0): Deferred restore for RPCs cannot continue, since restore data was not saved
2021-09-27T17:11:43.465Z| vcpu-0| | E002: vmiop_log: (0x0): Deferred call for vmiopd_restore_rpc_data failed at un-stun!
2021-09-27T17:11:43.465Z| vcpu-0| | E002: vmiop_log: (0x0): Failed to complete restore for deferred functions.
2021-09-27T18:44:27.034Z| vthread-2105550| | E002: vmiop_log: (0x0): VGPU message 1 failed, guest VGX version is already initialized...
2021-09-27T18:44:27.034Z| vthread-2105550| | E002: vmiop_log: (0x0): VGPU message 1 failed, result code: 0x40
...
2021-09-27T18:44:35.359Z| vthread-2105550| | I005: vmiop_log: (0x0): Guest driver unloaded!

Workaround

To avoid this issue, create your VMs in EFI mode.

If you encounter this issue with a VM that was created in legacy BIOS mode, shut down and restart the VM or power off the VM and power it on again.

Status

Not an NVIDIA bug

Ref. #

3386681

5.18. Since 11.6: NVENC does not work with Teradici Cloud Access Software on Windows

Description

The NVIDIA hardware-based H.264/HEVC video encoder (NVENC) does not work with Teradici Cloud Access Software on Windows. This issue affects NVIDIA vGPU and GPU pass through deployments.

This issue occurs because the check that Teradici Cloud Access Software performs on the DLL signer name is case sensitive and NVIDIA recently changed the case of the company name in the signature certificate.

Status

Not an NVIDIA bug

This issue is resolved in the latest 21.07 and 21.03 Teradici Cloud Access Software releases.

Ref. #

200749065

5.19. When a licensed client deployed by using VMware instant clone technology is destroyed, it does not return the license

Description

When a user logs out of a VM deployed by using VMware Horizon instant clone technology, the VM is deleted and OS is not shut down cleanly. The NVIDIA vGPU software license that was being used by the VM is not returned to the license server, which could cause the license server to run out of licenses.

Workaround

Deploy the instant-clone desktop pool with the following options:

  • Floating user assignment
  • All Machines Up-Front provisioning

This configuration will allow the MAC address to be reused on the newly cloned VMs.

For more information, refer to the documentation for the version of VMware Horizon that you are using:

Status

Not an NVIDIA bug

Ref. #

200744338

5.20. A licensed client might fail to acquire a license if a proxy is set

Description

If a proxy is set with a system environment variable such as HTTP_PROXY or HTTPS_PROXY, a licensed client might fail to acquire a license.

Workaround

Perform this workaround on each affected licensed client.

  1. Add the address of the NVIDIA vGPU software license server to the system environment variable NO_PROXY.

    The address must be specified exactly as it is specified in the client's license server settings either as a fully-qualified domain name or an IP address. If the NO_PROXY environment variable contains multiple entries, separate the entries with a comma (,).

    If high availability is configured for the license server, add the addresses of the primary license server and the secondary license server to the system environment variable NO_PROXY.

  2. Restart the NVIDIA driver service that runs the core NVIDIA vGPU software logic.

    • On Windows, restart the NVIDIA Display Container service.
    • On Linux, restart the nvidia-gridd service.

Status

Closed

Ref. #

200704733

5.21. Session connection fails with four 4K displays and NVENC enabled on a 2Q, 3Q, or 4Q vGPU

Description

Desktop session connections fail for a 2Q, 3Q, or 4Q vGPU that is configured with four 4K displays and for which the NVIDIA hardware-based H.264/HEVC video encoder (NVENC) is enabled. This issue affects only Teradici Cloud Access Software sessions on Linux guest VMs.

This issue is accompanied by the following error message:

This Desktop has no resources available or it has timed out

This issue is caused by insufficient frame buffer.

Workaround

Ensure that sufficient frame buffer is available for all the virtual displays that are connected to a vGPU by changing the configuration in one of the following ways:

  • Reducing the number of virtual displays. The number of 4K displays supported with NVENC enabled depends on the vGPU.
    vGPU 4K Displays Supported with NVENC Enabled
    2Q 1
    3Q 2
    4Q 3
  • Disabling NVENC. The number of 4K displays supported with NVENC disabled depends on the vGPU.
    vGPU 4K Displays Supported with NVENC Disabled
    2Q 2
    3Q 2
    4Q 4
  • Using a vGPU type with more frame buffer. Four 4K displays with NVENC enabled on any Q-series vGPU with at least 6144 MB of frame buffer are supported.

Status

Not an NVIDIA bug

Ref. #

200701959

5.22. Disconnected sessions cannot be reconnected or might be reconnected very slowly with NVWMI installed

Description

Disconnected sessions cannot be reconnected or might be reconnected very slowly when the NVIDIA Enterprise Management Toolkit (NVWMI) is installed. This issue affects Citrix Virtual Apps and Desktops and VMware Horizon sessions on Windows guest VMs.

Workaround

Uninstall NVWMI.

Status

Open

Ref. #

3262923

5.23. 11.0-11.3 Only: NVIDIA vGPU software graphics driver installation fails in Ubuntu guest VMs

Description

Installation of the NVIDIA vGPU software graphics driver from a .run file fails in Ubuntu guest VMs that are running Linux kernel version 5.8 or later.

Version

Ubuntu 20.04 LTS and 18.04 with Linux kernel version 5.8 or later

Workaround

Revert to a Linux kernel version earlier than 5.8.

Status

Resolved in NVIDIA vGPU software 11.4

Ref. #

3226853

5.24. For some accounted processes, nvidia-smi incorrectly reports maximum memory use of 0 MiB

Description

When the --query-accounted-apps option is used to list accounted compute processes, the nvidia-smi command incorrectly reports that the maximum memory use of some processes is 0 MiB. With the --query-accounted-apps option, nvidia-smi reports the maximum memory used by an application during its lifetime, and other information such as which GPU the application is running on and GR engine utilization.

Status

Open

Ref. #

200647764

5.25. Windows VM crashes during Custom (Advanced) driver upgrade

Description

When the NVIDIA vGPU software graphics driver in a Windows VM is upgraded with the Custom (Advanced) option selected, the VM crashes.



Screen capture showing the Custom (Advanced) option in the NVIDIA Installer window

Status

Open

Ref. #

200700291

5.26. Migrating a VM with a Tesla T4 vGPU between a host running NVIDIA vGPU software 11.3 and a host running a different release fails

Description

Migrating a VM with a Tesla T4 vGPU between hosts where one host is running NVIDIA vGPU software 11.3 and the other host is running a different release fails. After the migration, the destination host and VM become unstable.

When this issue occurs, error message XID error 38 is written to the VMware vSphere VM’s log file vmware.log in the guest VM’s storage directory. Depending on the host configurations, the following messages might also be written to the log file:

  • XID error 43
  • VGPU message 58
  • VGPU message 4

Version

This issue affects migrations between a host that is running NVIDIA vGPU software release 11.3 and a host that is running a different release. The issue affects migrations to and from the host that is running NVIDIA vGPU software release 11.3.

This issue does not affect migrations between two hosts that are both running NVIDIA vGPU software 11.3.

Workaround

If you are migrating a VM between a host that is running NVIDIA vGPU software 11.3 and a host that is running a another NVIDIA vGPU software 11 release, contact NVIDIA Enterprise Support for assistance.

Otherwise, avoid migrating a VM between a host that is running NVIDIA vGPU software 11.3 and a host that is running a different NVIDIA vGPU software release.

Status

Closed

Ref. #

200691763

200735219

5.27. 11.3 Only: Purple screen crash occurs after upgrade to the vGPU Manager in NVIDIA vGPU software 11.3

Description

A purple screen crash occurs on the hypervisor host after an upgrade to the vGPU Manager in NVIDIA vGPU software 11.3. This issue affects only hosts that are equipped with Tesla T4 GPUs.

Version

This issue affects upgrades to NVIDIA vGPU software 11.3.

Status

Resolved in NVIDIA vGPU software 11.4

Ref. #

200700530

5.28. 11.0-11.2 Only: Sessions freeze randomly with XID errors 38, 43, 32, and 31

Description

Issues such as a session freeze, black screen, application crash, or VM crash might randomly occur with VMs that are configured with a Tesla T4 vGPU. When these issues occur, XID error 38 followed by multiple instances of XID errors 43, 32, and 31 are written to the log files on the hypervisor host. This issue is caused by a regression in the NVIDIA firmware code for the Tesla T4 GPU and affects only VMs that are configured with a vGPU that resides on a Tesla T4 GPU.

Status

Resolved in NVIDIA vGPU software 11.3

Ref. #

200664572

5.29. 11.0, 11.1 Only: Device initialization fails on servers with 1 TiB or more of system memory

Description

On servers with 1 TiB or more of system memory, device initialization fails because the buffer for flushing system memory cannot be allocated. The device initialization failure might also be accompanied by a purple-screen crash. This issue occurs because a driver regression caused the address of the buffer to be longer than the 40 bits of address space that the GPU hardware unit for flushing system memory can handle.

The log file on the VMware vSphere host might also report errors similar to the following examples:
2020-09-09T08:27:24.218Z cpu137:2102521)NVRM: GPU 0000:c8:00.0: RmInitAdapter failed! (0x25:0x51:1238)
2020-09-09T08:27:24.218Z cpu137:2102521)NVRM: rm_init_adapter failed for device 0

The signature in the message (0x25:0x51:1238 in this example) depends on the NVIDIA vGPU software release.

Workaround

Limit the amount of system memory on the server to 1 TiB minus 16 GiB.

  1. Set memmapMaxRAMMB to 1032192, which is equal to 1048576 minus 16384.

    For detailed instructions, see Set Advanced Host Attributes in the VMware vSphere documentation.

  2. Reboot the server.

If the problem persists, revert to an earlier release of NVIDIA vGPU software that is not affected by this issue, for example 10.2.

Status

Resolved in NVIDIA vGPU software 11.2

Ref. #

200663459

5.30. 11.1 Only: Licensing event logs indicate license renewal from unavailable primary server

Description

Licensing event logs for the guest VM indicate that a license is renewed from primary license server even when primary license server is unavailable and the license is renewed from the secondary server.

Workaround

None. However, these incorrect event log entries are benign and can be ignored.

Status

Resolved in NVIDIA vGPU software 11.2

Ref. #

200658253

5.31. 11.0 Only: The NVIDIA license not present notification appears even for VMs for which the vGPU is licensed

Description

After starting and logging on to a Windows VM that is configured with NVIDIA vGPU, users see the NVIDIA license not present notification even when the vGPU is already licensed. This notification is misleading and should be ignored. This issue occurs because the NVIDIA driver is not storing the correct NVIDIA vGPU software license state.

Users can confirm that their vGPU is licensed in one of the following ways:

  • Opening NVIDIA Control Panel and checking the Licensing > Manage License page.
  • Running the following command in a Command Prompt window:
    C:\Program Files\NVIDIA Corporation\NVSMI\nvidia-smi -q

Version

This issue affects Windows server and Windows desktop operating systems.

Workaround

While the misleading notifications can be ignored, this workaround can be used to suppress the notifications if they cause confusion.

CAUTION:
This workaround suppresses all notifications, even valid notifications, from NVIDIA Container. Therefore, use this workaround only if immediate resolution is needed.
  1. When the notification appears, grab it by right-clicking in the notification window.

    Screen capture showing the appearance of the NVIDIA license not present notification on a Windows desktop

  2. In Action Center, go to Windows notifications for NVIDIA Container, right-click the notification, and click Go to notification settings.

    Screen capture showing Windows notifications for NVIDIA Container in Action Center

  3. In the notification settings for NVIDIA Container, set Show notification banners to Off.

    Screen capture showing the Show notification banners option for NVIDIA Container set to Off

If necessary, you can reenable these notifications in one of the following ways:

  • Use System settings as follows:
    1. In Notifications & actions, under Get notifications from these senders, select NVIDIA Container to see more settings.

      Screen capture showing NVIDIA Container under Get notifications from these senders in Notifications & actions

    2. In the notification settings for NVIDIA Container, set the Show notification banners option to On.

      Screen capture showing the Show notification banners option for NVIDIA Container set to On

  • Set the Windows registry key HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Notifications\Settings\Microsoft.Explorer.Notification.{D38519CE-37BE-5DFF-CF14-CC1848376559}\ShowBanner to 1.

    Screen capture showing the setting of the ShowBanner Windows registry key in the Registry Editor

Status

Resolved in NVIDIA vGPU software 11.1

Ref. #

3087984

5.32. Driver upgrade in a Linux guest VM with multiple vGPUs might fail

Description

Upgrading the NVIDIA vGPU software graphics driver in a Linux guest VM with multiple vGPUs might fail. This issue occurs if the driver is upgraded by overinstalling the new release of the driver on the current release of the driver while the nvidia-gridd service is running in the VM.

Workaround

  1. Stop the nvidia-gridd service.
  2. Try again to upgrade the driver.

Status

Open

Ref. #

200633548

5.33. 11.0 Only: Failure to allocate resources causes VM failures or crashes

Description

Failure to allocate resources causes VM failures or crashes. When the error occurs, the error message NVOS status 0x19 is written to the log file on the hypervisor host. Depending on the resource and the underlying cause of the failure, VGPU message 52 failed, VGPU message 4 failed, VGPU message 21 failed, and VGPU message 10 failed might also be written to the log file on the hypervisor host.

Status

Resolved in NVIDIA vGPU software 11.1

Ref. #

200626446

5.34. NVIDIA Control Panel fails to start if launched too soon from a VM without licensing information

Description

If NVIDIA licensing information is not configured on the system, any attempt to start NVIDIA Control Panel by right-clicking on the desktop within 30 seconds of the VM being started fails.

Workaround

Restart the VM and wait at least 30 seconds before trying to launch NVIDIA Control Panel.

Status

Open

Ref. #

200623179

5.35.  Citrix Virtual Apps and Desktops session corruption occurs in the form of residual window borders

Description

When a window is dragged across the desktop in a Citrix Virtual Apps and Desktops session, corruption of the session in the form of residual window borders occurs.

Version

This issue affects only Citrix Virtual Apps and Desktops version 7 2003

Workaround

Use Citrix Virtual Apps and Desktops version 7 1912 or 2006.

Status

Not an NVIDIA bug

Ref. #

200608675

5.36. VMware Horizon clients cannot connect to a Windows 10 2004 VM with multiple displays

Description

Some VMware Horizon clients cannot connect to a Windows 10 2004 VM with multiple displays. When this issue occurs, the VM becomes unusable and clients cannot connect to the VM even if only a single display is connected to it.

This issue occurs because the desktop capture mechanism for the affected VMware Horizon clients is provided by NVIDIA® Frame Buffer Capture (NVFBC) and NVFBC is deprecated on Windows 10 starting with Windows 10 October 2019 Update. For more information, see NVFBC Windows 10 Support Deprecation Technical Bulletin (PDF).

Version

This issue affects only Windows 10 May 2020 Update (2004) guest VMs.

Workaround

Contact VMware to obtain a version of VMware Horizon for which the desktop capture mechanism is not provided by NVFBC.

Status

Not an NVIDIA bug

Ref. #

200607827

5.37. Suspend and resume between hosts running different versions of the vGPU manager fails

Description

Suspending a VM configured with vGPU on a host running one version of the vGPU manager and resuming the VM on a host running a version from an older main release branch fails. For example, suspending a VM on a host that is running the vGPU manager from release 11.13 and resuming the VM on a host running the vGPU manager from release 10.4 fails. When this issue occurs, the error One or more devices (pciPassthru0) required by VM vm-name are not available on host host-name is reported on VMware vCenter Server.

Status

Not an NVIDIA bug

Ref. #

200602087

5.38. 11.0 Only: Remoting solution session freezes with VGPU message 21 failed and VGPU message 14 failed errors

Description

The remoting solution session sometimes freezes while a window is being resized. For a Windows guest VM, the error message VGPU message 21 failed is written to the log file on the hypervisor host. For a Linux guest VM, the error messages VGPU message 21 failed and VGPU message 14 failed are written to the log file on the hypervisor host.

Workaround

Try resizing the window again.

Status

Resolved in NVIDIA vGPU software 11.1

Ref. #

200627445

5.39. On Linux, a VMware Horizon 7.12 session freezes after a switch to full screen

Description

On a Linux VM configured with a -1Q vGPU, one 4K display, and VMware Horizon 7.12, the VMware Horizon session might become unresponsive after a switch from large screen (windowed) to full screen. When this issue occurs, the VMware vSphere VM’s log file contains the error message Unable to set requested topology.

Version

This issue affects deployments that use VMware Horizon 7.12.

Workaround

Use VMware Horizon 7.11.

Status

Open

Ref. #

200617112

5.40. On Linux, a VMware Horizon 7.12 session with two 4K displays freezes

Description

On a Linux VM configured with a -1Q vGPU, two 4K displays, and VMware Horizon 7.12, the VMware Horizon session might become unresponsive. When this issue occurs, the VMware vSphere VM’s log file contains the error message Failed to setup capture session (error 8). Unable to allocate video memory.

Version

This issue affects deployments that use VMware Horizon 7.12.

Workaround

Use VMware Horizon 7.11 or a vGPU with more frame buffer.

Status

Open

Ref. #

200617081

5.41. On Linux, the frame rate might drop to 1 after several minutes

Description

On Linux, the frame rate might drop to 1 frame per second (FPS) after NVIDIA vGPU software has been running for several minutes. Only some applications are affected, for example, glxgears. Other applications, such as Unigine Heaven, are not affected. This behavior occurs because Display Power Management Signaling (DPMS) for the Xorg server is enabled by default and the display is detected to be inactive even when the application is running. When DPMS is enabled, it enables power saving behavior of the display after several minutes of inactivity by setting the frame rate to 1 FPS.

Workaround

  1. If necessary, stop the Xorg server.

    # /etc/init.d/xorg stop
  2. In a plain text editor, edit the /etc/X11/xorg.conf file to set the options to disable DPMS and disable the screen saver.

    1. In the Monitor section, set the DPMS option to false.
      Option "DPMS" "false"
    2. At the end of the file, add a ServerFlags section that contains option to disable the screen saver.
      Section "ServerFlags"
          Option "BlankTime" "0"
        EndSection
    3. Save your changes to /etc/X11/xorg.conf file and quit the editor.
  3. Start the Xorg server.

    # etc/init.d/xorg start

Status

Open

Ref. #

200605900

5.42. Frame buffer consumption grows with VMware Horizon over Blast Extreme

Description

When VMware Horizon is used with the Blast Extreme display protocol, frame buffer consumption increases over time after multiple disconnections from and reconnections to a VM. This issue occurs even if the VM is in an idle state and no graphics applications are running.

Workaround

Reboot the VM.

Status

Not an NVIDIA bug

Ref. #

200602520

5.43. DWM crashes randomly occur in Windows VMs

Description

Desktop Windows Manager (DWM) crashes randomly occur in Windows VMs, causing a blue-screen crash and the bug check CRITICAL_PROCESS_DIED. Computer Management shows problems with the primary display device.

Version

This issue affects Windows 10 1809, 1903 and 1909 VMs.

Status

Not an NVIDIA bug

Ref. #

2730037

5.44. Remote desktop session freezes with assertion failure and XID error 43 after migration

Description

After multiple VMs configured with vGPU on a single hypervisor host are migrated simultaneously, the remote desktop session freezes with an assertion failure and XID error 43. This issue affects only GPUs that are based on the Volta GPU architecture. It does not occur if only a single VM is migrated.

When this error occurs, the following error messages are logged to the VMware vSphere Hypervisor (ESXi) log file:

Jan  3 14:35:48 ch81-m1 vgpu-12[8050]: error: vmiop_log: NVOS status 0x1f
Jan  3 14:35:48 ch81-m1 vgpu-12[8050]: error: vmiop_log: Assertion Failed at 0x4b8cacf6:286
...
Jan  3 14:35:59 ch81-m1 vgpu-12[8050]: error: vmiop_log: (0x0): XID 43 detected on physical_chid:0x174, guest_chid:0x14

Status

Open

Ref. #

200581703

5.45. Citrix Virtual Apps and Desktops session freezes when the desktop is unlocked

Description

When a Citrix Virtual Apps and Desktops session that is locked is unlocked by pressing Ctrl+Alt+Del, the session freezes. This issue affects only VMs that are running Microsoft Windows 10 1809 as a guest OS.

Version

Microsoft Windows 10 1809 guest OS

Workaround

Restart the VM.

Status

Not an NVIDIA bug

Ref. #

2767012

5.46. NVIDIA vGPU software graphics driver fails after Linux kernel upgrade with DKMS enabled

Description

After the Linux kernel is upgraded (for example by running sudo apt full-upgrade) with Dynamic Kernel Module Support (DKMS) enabled, the nvidia-smi command fails to run. If DKMS is enabled, an upgrade to the Linux kernel triggers a rebuild of the NVIDIA vGPU software graphics driver. The rebuild of the driver fails because the compiler version is incorrect. Any attempt to reinstall the driver fails because the kernel fails to build.

When the failure occurs, the following messages are displayed:

-> Installing DKMS kernel module:
        ERROR: Failed to run `/usr/sbin/dkms build -m nvidia -v  450.51.05 -k 5.3.0-28-generic`: 
        Kernel preparation unnecessary for this kernel. Skipping...
        Building module:
        cleaning build area...
        'make' -j8 NV_EXCLUDE_BUILD_MODULES='' KERNEL_UNAME=5.3.0-28-generic IGNORE_CC_MISMATCH='' modules...(bad exit status: 2)
        ERROR (dkms apport): binary package for nvidia:  450.51.05 not found
        Error! Bad return status for module build on kernel: 5.3.0-28-generic (x86_64)
        Consult /var/lib/dkms/nvidia/ 450.51.05/build/make.log for more information.
        -> error.
        ERROR: Failed to install the kernel module through DKMS. No kernel module was installed;
        please try installing again without DKMS, or check the DKMS logs for more information.
        ERROR: Installation has failed. Please see the file '/var/log/nvidia-installer.log' for details.
        You may find suggestions on fixing installation problems in the README available on the Linux driver download page at www.nvidia.com.

Workaround

When installing the NVIDIA vGPU software graphics driver with DKMS enabled, use one of the following workarounds:

  • Before running the driver installer, install the dkms package, then run the driver installer with the -dkms option.
  • Run the driver installer with the --no-cc-version-check option.

Status

Not a bug.

Ref. #

2836271

5.47. Red Hat Enterprise Linux and CentOS 6 VMs hang during driver installation

Description

During installation of the NVIDIA vGPU software graphics driver in a Red Hat Enterprise Linux or CentOS 6 guest VM, a kernel panic occurs, and the VM hangs and cannot be rebooted. This issue is observed on older Linux kernels when the NVIDIA device is using message-signaled interrupts (MSIs).

Version

This issue affects the following guest OS releases:

  • Red Hat Enterprise Linux 6.6 and later compatible 6.x versions
  • CentOS 6.6 and later compatible 6.x versions

Workaround

  1. Disable MSI in the guest VM to fall back to INTx interrupts by adding the following line to the file /etc/modprobe.d/nvidia.conf:

    options nvidia NVreg_EnableMSI=0

    If the file /etc/modprobe.d/nvidia.conf does not exist, create it.

  2. Install the NVIDIA vGPU Software graphics driver in the guest VM.

Status

Closed

Ref. #

200556896

5.48. Publisher not verified warning during Windows 7 driver installation

Description

During installation of the NVIDIA vGPU software graphics driver for Windows on Windows 7, Windows warns that it can't verify the publisher of the driver software. If Device Manager is used to install the driver, Device Manager warns that the driver is not digitally signed. If you install the driver, error 52 (CM_PROB_UNSIGNED_DRIVER) occurs.

This issue occurs because Microsoft is no longer dual signing WHQL-tested software binary files by using the SHA-1 and SHA-2 hash algorithms. Instead, WHQL-tested software binary files are signed only by using the SHA-2 hash algorithm. All NVIDIA vGPU software graphics drivers for Windows are WHQL tested.

By default, Windows 7 systems cannot recognize signatures that were created by using the SHA-2 hash algorithm. As a result, software binary files that are signed only by using the SHA-2 hash algorithm are considered unsigned.

For more information, see 2019 SHA-2 Code Signing Support requirement for Windows and WSUS on the Microsoft Windows support website.

Version

Windows 7

Workaround

If you experience this issue, install the following updates and restart the VM or host before installing the driver:

Status

Not a bug

5.49. Tesla T4 is enumerated as 32 separate GPUs by VMware vSphere ESXi

Description

Some servers, for example, the Dell R740, do not configure SR-IOV capability if the SR-IOV SBIOS setting is disabled on the server. If the SR-IOV SBIOS setting is disabled on such a server that is being used with the Tesla T4 GPU, VMware vSphere ESXi enumerates the Tesla T4 as 32 separate GPUs. In this state, you cannot use the GPU to configure a VM with NVIDIA vGPU or for GPU pass through.

Workaround

Ensure that the SR-IOV SBIOS setting is enabled on the server.

Status

Not an NVIDIA bug

A fix is available from VMware in VMware vSphere ESXi 7.0 Update 2.

Ref. #

2697051

5.50. VMware vCenter shows GPUs with no available GPU memory

Description

VMware vCenter shows some physical GPUs as having 0.0 B of available GPU memory. VMs that have been assigned vGPUs on the affected physical GPUs cannot be booted. The nvidia-smi command shows the same physical GPUs as having some GPU memory available.

Workaround

Stop and restart the Xorg service and nv-hostengine on the ESXi host.

  1. Stop all running VM instances on the host.

  2. Stop the Xorg service.

    [root@esxi:~] /etc/init.d/xorg stop
  3. Stop nv-hostengine.

    [root@esxi:~] nv-hostengine -t
  4. Wait for 1 second to allow nv-hostengine to stop.

  5. Start nv-hostengine.

    [root@esxi:~] nv-hostengine -d
  6. Start the Xorg service.

    [root@esxi:~] /etc/init.d/xorg start

Status

Not an NVIDIA bug

A fix is available from VMware in VMware vSphere ESXi 6.7 U3. For information about the availability of fixes for other releases of VMware vSphere ESXi, contact VMware.

Ref. #

2644794

5.51. Users' sessions may freeze during vMotion migration of VMs configured with vGPU

Description

When vMotion is used to migrate a VM configured with vGPU to another host, users' sessions may freeze for up to several seconds during the migration.

These factors may increase the length of time for which a session freezes:

  • Continuous use of the frame buffer by the workload, which typically occurs with workloads such as video streaming
  • A large amount of vGPU frame buffer
  • A large amount of system memory
  • Limited network bandwidth

Workaround

Administrators can mitigate the effects on end users by avoiding migration of VMs configured with vGPU during business hours or warning end users that migration is about to start and that they may experience session freezes.

End users experiencing this issue must wait for their sessions to resume when the migration is complete.

Status

Open

Ref. #

2569578

5.52. Migration of VMs configured with vGPU stops before the migration is complete

Description

When a VM configured with vGPU is migrated to another host, the migration stops before it is complete. After the migration stops, the VM is no longer accessible.

This issue occurs if the ECC memory configuration (enabled or disabled) on the source and destination hosts are different. The ECC memory configuration on both the source and destination hosts must be identical.

Workaround

Reboot the hypervisor host to recover the VM. Before attempting to migrate the VM again, ensure that the ECC memory configuration on both the source and destination hosts are identical.

Status

Not an NVIDIA bug

A fix is that prevents the VM from becoming inaccessible is available from VMware in VMware vSphere Hypervisor (ESXi) 6.7 Update 3 patch 16075168-04282020. Even with this patch, migration of a VM configured with vGPU requires the ECC memory configuration on both the source and destination hosts to be identical.

Ref. #

200520027

5.53. ECC memory settings for a vGPU cannot be changed by using NVIDIA X Server Settings

Description

The ECC memory settings for a vGPU cannot be changed from a Linux guest VM by using NVIDIA X Server Settings. After the ECC memory state has been changed on the ECC Settings page and the VM has been rebooted, the ECC memory state remains unchanged.

Workaround

Use the nvidia-smi command in the guest VM to enable or disable ECC memory for the vGPU as explained in Virtual GPU Software User Guide.

If the ECC memory state remains unchanged even after you use the nvidia-smi command to change it, use the workaround in Changes to ECC memory settings for a Linux vGPU VM by nvidia-smi might be ignored.

Status

Open

Ref. #

200523086

5.54. Changes to ECC memory settings for a Linux vGPU VM by nvidia-smi might be ignored

Description

After the ECC memory state for a Linux vGPU VM has been changed by using the nvidia-smi command and the VM has been rebooted, the ECC memory state might remain unchanged.

This issue occurs when multiple NVIDIA configuration files in the system cause the kernel module option for setting the ECC memory state RMGuestECCState in /etc/modprobe.d/nvidia.conf to be ignored.

When the nvidia-smi command is used to enable ECC memory, the file /etc/modprobe.d/nvidia.conf is created or updated to set the kernel module option RMGuestECCState. Another configuration file in /etc/modprobe.d/ that contains the keyword NVreg_RegistryDwordsPerDevice might cause the kernel module option RMGuestECCState to be ignored.

Workaround

This workaround requires administrator privileges.

  1. Move the entry containing the keyword NVreg_RegistryDwordsPerDevice from the other configuration file to /etc/modprobe.d/nvidia.conf.
  2. Reboot the VM.

Status

Open

Ref. #

200505777

5.55. Black screens observed when a VMware Horizon session is connected to four displays

Description

When a VMware Horizon session with Windows 7 is connected to four displays, a black screen is observed on one or more displays.

This issue occurs because a VMware Horizon session does not support connections to four 4K displays with Windows 7.

Status

Not an NVIDIA bug

Ref. #

200503538

5.56. Quadro RTX 8000 and Quadro RTX 6000 GPUs can't be used with VMware vSphere ESXi 6.5

Description

Quadro RTX 8000 and Quadro RTX 6000 GPUs can't be used with VMware vSphere ESXi 6.5. If you attempt to use the Quadro RTX 8000 or Quadro RTX 6000 GPU with VMware vSphere ESXi 6.5, a purple-screen crash occurs after you install the NVIDIA Virtual GPU Manager.

Version

VMware vSphere ESXi 6.5

Workaround

Upgrade VMware vSphere ESXi to patch level ESXi 6.5 P04 (ESXi650-201912002, build 15256549) or later.

VMware resolved this issue in this patch for VMware vSphere ESXi.

Status

Not an NVIDIA bug

Ref. #

200491080

5.57. Vulkan applications crash in Windows 7 guest VMs configured with NVIDIA vGPU

Description

In Windows 7 guest VMs configured with NVIDIA vGPU, applications developed with Vulkan APIs crash or throw errors when they are launched. Vulkan APIs require sparse texture support, but in Windows 7 guest VMs configured with NVIDIA vGPU, sparse textures are not enabled.

In Windows 10 guest VMs configured with NVIDIA vGPU, sparse textures are enabled and applications developed with Vulkan APIs run correctly in these VMs.

Status

Open

Ref. #

200381348

5.58. Host core CPU utilization is higher than expected for moderate workloads

Description

When GPU performance is being monitored, host core CPU utilization is higher than expected for moderate workloads. For example, host CPU utilization when only a small number of VMs are running is as high as when several times as many VMs are running.

Workaround

Disable monitoring of the following GPU performance statistics:

  • vGPU engine usage by applications across multiple vGPUs
  • Encoder session statistics
  • Frame buffer capture (FBC) session statistics
  • Statistics gathered by performance counters in guest VMs

Status

Open

Ref. #

2414897

5.59. H.264 encoder falls back to software encoding on 1Q vGPUs with a 4K display

Description

On 1Q vGPUs with a 4K display, a shortage of frame buffer causes the H.264 encoder to fall back to software encoding.

Workaround

Use a 2Q or larger virtual GPU type to provide more frame buffer for each vGPU.

Status

Open

Ref. #

2422580

5.60. H.264 encoder falls back to software encoding on 2Q vGPUs with 3 or more 4K displays

Description

On 2Q vGPUs with three or more 4K displays, a shortage of frame buffer causes the H.264 encoder to fall back to software encoding.

This issue affects only vGPUs assigned to VMs that are running a Linux guest OS.

Workaround

Use a 4Q or larger virtual GPU type to provide more frame buffer for each vGPU.

Status

Open

Ref. #

200457177

5.61. Frame capture while the interactive logon message is displayed returns blank screen

Description

Because of a known limitation with NvFBC, a frame capture while the interactive logon message is displayed returns a blank screen.

An NvFBC session can capture screen updates that occur after the session is created. Before the logon message appears, there is no screen update after the message is shown and, therefore, a black screen is returned instead. If the NvFBC session is created after this update has occurred, NvFBC cannot get a frame to capture.

Workaround

Press Enter or wait for the screen to update for NvFBC to capture the frame.

Status

Not a bug

Ref. #

2115733

5.62. RDS sessions do not use the GPU with some Microsoft Windows Server releases

Description

When some releases of Windows Server are used as a guest OS, Remote Desktop Services (RDS) sessions do not use the GPU. With these releases, the RDS sessions by default use the Microsoft Basic Render Driver instead of the GPU. This default setting enables 2D DirectX applications such as Microsoft Office to use software rendering, which can be more efficient than using the GPU for rendering. However, as a result, 3D applications that use DirectX are prevented from using the GPU.

Version

  • Windows Server 2019
  • Windows Server 2016
  • Windows Server 2012

Solution

Change the local computer policy to use the hardware graphics adapter for all RDS sessions.

  1. Choose Local Computer Policy > Computer Configuration > Administrative Templates > Windows Components > Remote Desktop Services > Remote Desktop Session Host > Remote Session Environment.

  2. Set the Use the hardware default graphics adapter for all Remote Desktop Services sessions option.

5.63. VMware vMotion fails gracefully under heavy load

Description

Migrating a VM configured with vGPU fails gracefully if the VM is running an intensive workload.

The error stack in the task details on the vSphere web client contains the following error message:

The migration has exceeded the maximum switchover time of 100 second(s). 
ESX has preemptively failed the migration to allow the VM to continue running on the source. 
To avoid this failure, either increase the maximum allowable switchover time or wait until
the VM is performing a less intensive workload.

Workaround

Increase the maximum switchover time by increasing the vmotion.maxSwitchoverSeconds option from the default value of 100 seconds.

For more information, see VMware Knowledge Base Article: vMotion or Storage vMotion of a VM fails with the error: The migration has exceeded the maximum switchover time of 100 second(s) (2141355).

Status

Not an NVIDIA bug

Ref. #

200416700

5.64. View session freezes intermittently after a Linux VM acquires a license

Description

In a Linux VM, the view session can sometimes freeze after the VM acquires a license.

Workaround

Resize the view session.

Status

Not an NVIDIA bug

Ref. #

200426961

5.65. When the scheduling policy is fixed share, GPU utilization is reported as higher than expected

Description

When the scheduling policy is fixed share, GPU engine utilization can be reported as higher than expected for a vGPU.

For example, GPU engine usage for six P40-4Q vGPUs on a Tesla P40 GPU might be reported as follows:

[root@localhost:~] nvidia-smi vgpu
Mon Aug 20 10:33:18 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.42                 Driver Version: 390.42                    |
|-------------------------------+--------------------------------+------------+
| GPU  Name                     | Bus-Id                         | GPU-Util   |
|      vGPU ID    Name          | VM ID    VM Name               | vGPU-Util  |
|===============================+================================+============|
|   0  Tesla P40                | 00000000:81:00.0               |  99%       |
|      85109      GRID P40-4Q   | 85110    win7-xmpl-146048-1    |     32%    |
|      87195      GRID P40-4Q   | 87196    win7-xmpl-146048-2    |     39%    |
|      88095      GRID P40-4Q   | 88096    win7-xmpl-146048-3    |     26%    |
|      89170      GRID P40-4Q   | 89171    win7-xmpl-146048-4    |      0%    |
|      90475      GRID P40-4Q   | 90476    win7-xmpl-146048-5    |      0%    |
|      93363      GRID P40-4Q   | 93364    win7-xmpl-146048-6    |      0%    |
+-------------------------------+--------------------------------+------------+
|   1  Tesla P40                | 00000000:85:00.0               |   0%       |
+-------------------------------+--------------------------------+------------+

The vGPU utilization of vGPU 85109 is reported as 32%. For vGPU 87195, vGPU utilization is reported as 39%. And for 88095, it is reported as 26%. However, the expected vGPU utilization of any vGPU should not exceed approximately 16.7%.

This behavior is a result of the mechanism that is used to measure GPU engine utilization.

Status

Open

Ref. #

2227591

5.66. nvidia-smi reports that vGPU migration is supported on all hypervisors

Description

The command nvidia-smi vgpu -m shows that vGPU migration is supported on all hypervisors, even hypervisors or hypervisor versions that do not support vGPU migration.

Status

Closed

Ref. #

200407230

5.67. GPU resources not available error during VMware instant clone provisioning

Description

A GPU resources not available error might occur during VMware instant clone provisioning. On Windows VMs, a Video TDR failure - NVLDDMKM.sys error causes a blue screen crash.

This error occurs when options for VMware Virtual Shared Graphics Acceleration (vSGA) are set for a VM that is configured with NVIDIA vGPU. VMware vSGA is a feature of VMware vSphere that enables multiple virtual machines to share the physical GPUs on ESXi hosts and can be used as an alternative to NVIDIA vGPU.

Depending on the combination of options set, one of the following error messages is seen when the VM is powered on:

  • Module ‘MKS’ power on failed.

    This message is seen when the following options are set:

    • Enable 3D support is selected.
    • 3D Renderer is set to Hardware
    • The graphics type of all GPUs on the ESXi host is Shared Direct.
  • Hardware GPU resources are not available. The virtual machine will use software rendering.

    This message is seen when the following options are set:

    • Enable 3D support is selected.
    • 3D Renderer is set to Automatic.
    • The graphics type of all GPUs on the ESXi host is Shared Direct.

Resolution

If you want to use NVIDIA vGPU, unset any options for VMware vSGA that are set for the VM.

  1. Ensure that the VM is powered off.
  2. Open the vCenter Web UI.
  3. In the vCenter Web UI, right-click the VM and choose Edit Settings.
  4. Click the Virtual Hardware tab.
  5. In the device list, expand the Video card node and de-select the Enable 3D support option.
  6. Start the VM.

Status

Not a bug

Ref. #

2369683

5.68. VMs with 32 GB or more of RAM fail to boot with GPUs requiring 64 GB or more of MMIO space

Description

VMs with 32 GB or more of RAM fail to boot with GPUs that require 64 GB or more of MMIO space. VMs boot successfully with RAM allocations of less than 32 GB.

The following table lists the GPUs that require 64 GB or more of MMIO space and the amount of MMIO space that each GPU requires.

GPU MMIO Space Required
NVIDIA A100 40GB (all variants) 128 GB
Quadro RTX 6000 Passive 64 GB
Quadro RTX 8000 Passive 64 GB
Tesla P6 64 GB
Tesla P40 64 GB
Tesla P100 (all variants) 64 GB
Tesla V100 (all variants) 64 GB

Version

This issue affects the following versions of VMware vSphere ESXi:

  • 6.0 Update 3 and later updates
  • 6.5 and later updates

Workaround

If you want to use a VM with 32 GB or more of RAM with GPUs that require 64 GB or more of MMIO space, use this workaround:

  1. Create a VM to which less than 32 GB of RAM is allocated.

  2. Choose VM Options > Advanced and set pciPassthru.use64bitMMIO="TRUE".

  3. Allocate the required amount of RAM to the VM.

For more information, see VMware Knowledge Base Article: VMware vSphere VMDirectPath I/O: Requirements for Platforms and Devices (2142307).

Status

Not an NVIDIA bug

Resolved in VMware vSphere ESXi 6.7

Ref. #

2043171

5.69. Module load failed during VIB downgrade from R390 to R384

Description

Some registry keys are available only with the R390 Virtual GPU Manager, for example, NVreg_IgnoreMMIOCheck. If any keys that are available only with the R390 Virtual GPU Manager are set, the NVIDIA module fails to load after a downgrade from R390 to R384.

When nvidia-smi is run without any arguments to verify the installation, the following error message is displayed:

NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.

Workaround

Before uninstalling the R390 VIB, clear all parameters of the nvidia module to remove any registry keys that are available only for the R390 Virtual GPU Manager.

# esxcli system module parameters set -p "" -m nvidia

Status

Not an NVIDIA bug

Ref. #

200366884

5.70. Tesla P40 cannot be used in pass-through mode

Description

Pass-through mode on Tesla P40 GPUs and other GPUs based on the Pascal architecture does not work as expected. In some situations, after the VM is powered on, the guest OS crashes or fails to boot.

Workaround

Ensure that your GPUs are configured as described in Requirements for Using GPUs Requiring Large MMIO Space in Pass-Through Mode

Status

Not a bug

Ref. #

1944539

5.71. On Linux, 3D applications run slowly when windows are dragged

Description

When windows for 3D applications on Linux are dragged, the frame rate drops substantially and the application runs slowly.

This issue does not affect 2D applications.

Status

Open

Ref. #

1949482

5.72. A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise Linux and CentOS

Description

On Red Hat Enterprise Linux 6.8 and 6.9, and CentOS 6.8 and 6.9, a segmentation fault in DBus code causes the nvidia-gridd service to exit.

The nvidia-gridd service uses DBus for communication with NVIDIA X Server Settings to display licensing information through the Manage License page. Disabling the GUI for licensing resolves this issue.

To prevent this issue, the GUI for licensing is disabled by default. You might encounter this issue if you have enabled the GUI for licensing and are using Red Hat Enterprise Linux 6.8 or 6.9, or CentOS 6.8 and 6.9.

Version

Red Hat Enterprise Linux 6.8 and 6.9

CentOS 6.8 and 6.9

Status

Open

Ref. #

  • 200358191
  • 200319854
  • 1895945

5.73. No Manage License option available in NVIDIA X Server Settings by default

Description

By default, the Manage License option is not available in NVIDIA X Server Settings. This option is missing because the GUI for licensing on Linux is disabled by default to work around the issue that is described in A segmentation fault in DBus code causes nvidia-gridd to exit on Red Hat Enterprise Linux and CentOS.

Workaround

This workaround requires sudo privileges.

Note: Do not use this workaround with Red Hat Enterprise Linux 6.8 and 6.9 or CentOS 6.8 and 6.9. To prevent a segmentation fault in DBus code from causing the nvidia-gridd service from exiting, the GUI for licensing must be disabled with these OS versions.

If you are licensing a physical GPU for vCS, you must use the configuration file /etc/nvidia/gridd.conf.

  1. If NVIDIA X Server Settings is running, shut it down.
  2. If the /etc/nvidia/gridd.conf file does not already exist, create it by copying the supplied template file /etc/nvidia/gridd.conf.template.

  3. As root, edit the /etc/nvidia/gridd.conf file to set the EnableUI option to TRUE.

  4. Start the nvidia-gridd service.

    # sudo service nvidia-gridd start

When NVIDIA X Server Settings is restarted, the Manage License option is now available.

Status

Open

5.74. Licenses remain checked out when VMs are forcibly powered off

Description

NVIDIA vGPU software licenses remain checked out on the license server when non-persistent VMs are forcibly powered off.

The NVIDIA service running in a VM returns checked out licenses when the VM is shut down. In environments where non-persistent licensed VMs are not cleanly shut down, licenses on the license server can become exhausted. For example, this issue can occur in automated test environments where VMs are frequently changing and are not guaranteed to be cleanly shut down. The licenses from such VMs remain checked out against their MAC address for seven days before they time out and become available to other VMs.

Resolution

If VMs are routinely being powered off without clean shutdown in your environment, you can avoid this issue by shortening the license borrow period. To shorten the license borrow period, set the LicenseInterval configuration setting in your VM image. For details, refer to Virtual GPU Client Licensing User Guide.

Status

Closed

Ref. #

1694975

5.75. Memory exhaustion can occur with vGPU profiles that have 512 Mbytes or less of frame buffer

Description

Memory exhaustion can occur with vGPU profiles that have 512 Mbytes or less of frame buffer.

This issue typically occurs in the following situations:

  • Full screen 1080p video content is playing in a browser. In this situation, the session hangs and session reconnection fails.
  • Multiple display heads are used with Citrix Virtual Apps and Desktops or VMware Horizon on a Windows 10 guest VM.
  • Higher resolution monitors are used.
  • Applications that are frame-buffer intensive are used.
  • NVENC is in use.

To reduce the possibility of memory exhaustion, NVENC is disabled on profiles that have 512 Mbytes or less of frame buffer.

When memory exhaustion occurs, the NVIDIA host driver reports Xid error 31 and Xid error 43 in the VMware vSphere log file vmware.log in the guest VM’s storage directory.

The following vGPU profiles have 512 Mbytes or less of frame buffer:

  • Tesla M6-0B, M6-0Q
  • Tesla M10-0B, M10-0Q
  • Tesla M60-0B, M60-0Q

The root cause is a known issue associated with changes to the way that recent Microsoft operating systems handle and allow access to overprovisioning messages and errors. If your systems are provisioned with enough frame buffer to support your use cases, you should not encounter these issues.

Workaround

  • Use an appropriately sized vGPU to ensure that the frame buffer supplied to a VM through the vGPU is adequate for your workloads.
  • Monitor your frame buffer usage.
  • If you are using Windows 10, consider these workarounds and solutions:

Status

Open

Ref. #

  • 200130864
  • 1803861

5.76. vGPU VM fails to boot in ESXi 6.5 if the graphics type is Shared

Description

Note: If vSGA is being used, this issue shouldn't be encountered and changing the default graphics type is not necessary.

On VMware vSphere Hypervisor (ESXi) 6.5, after vGPU is configured, VMs to which a vGPU is assigned may fail to start and the following error message may be displayed:

The amount of graphics resource available in the parent resource pool is insufficient for the operation.

The vGPU Manager VIB provides vSGA and vGPU functionality in a single VIB. After this VIB is installed, the default graphics type is Shared, which provides vSGA functionality. To enable vGPU support for VMs in VMware vSphere 6.5, you must change the default graphics type to Shared Direct. If you do not change the default graphics type you will encounter this issue.

Version

VMware vSphere Hypervisor (ESXi) 6.5

Workaround

Change the default graphics type to Shared Direct as explained in Virtual GPU Software User Guide.

Status

Open

Ref. #

200256224

5.77. ESXi 6.5 web client shows high memory usage even when VMs are idle

Description

On VMware vSphere Hypervisor (ESXi) 6.5, the web client shows a memory usage alarm with critical severity for VMs to which a vGPU is attached even when the VMs are idle. When memory usage is monitored from inside the VM, no memory usage alarm is shown. The web client does not show a memory usage alarm for the same VMs without an attached vGPU.

Version

VMware vSphere Hypervisor (ESXi) 6.5

Workaround

Avoid using the VMware vSphere Hypervisor (ESXi) 6.5 web client to monitor memory usage for VMs to which a vGPU is attached.

Status

Not an NVIDIA bug

Ref. #

200191065

5.78. NVIDIA driver installation may fail for VMs on a host in a VMware DRS cluster

Description

For VMware vSphere releases before 6.7 Update 1, the ESXi host on which VMs configured with NVIDIA vGPU reside must not be a member of an automated VMware Distributed Resource Scheduler (DRS) cluster. The installer for the NVIDIA driver for NVIDIA vGPU software cannot locate the NVIDIA vGPU software GPU card on a host in an automated VMware DRS Cluster. Any attempt to install the driver on a VM on a host in an automated DRS cluster fails with the following error:

NVIDIA Installer cannot continue
This graphics driver could not find compatible graphics hardware.
Note: This issue does not occur with VMs running VMware vSphere 6.7 Update 1 or later without load balancing support. For these releases, vSphere DRS supports automatic initial placement of VMs configured with NVIDIA vGPU.

Version

VMware vSphere Hypervisor (ESXi) releases before 6.7 Update 1.

Workaround

Ensure that the automation level of the DRS cluster is set to Manual.

For more information about this setting, see Edit Cluster Settings in the VMware documentation.

Status

Open

Ref. #

1933449

5.79. GNOME Display Manager (GDM) fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0

Description

GDM fails to start on Red Hat Enterprise Linux 7.2 and CentOS 7.0 with the following error:

Oh no! Something has gone wrong!

Workaround

Permanently enable permissive mode for Security Enhanced Linux (SELinux).

  1. As root, edit the /etc/selinux/config file to set SELINUX to permissive.
    SELINUX=permissive
  2. Reboot the system.
    ~]# reboot

For more information, see Permissive Mode in Red Hat Enterprise Linux 7 SELinux User's and Administrator's Guide.

Status

Not an NVIDIA bug

Ref. #

200167868

5.80. NVIDIA Control Panel fails to start and reports that “you are not currently using a display that is attached to an Nvidia GPU”

Description

When you launch NVIDIA Control Panel on a VM configured with vGPU, it fails to start and reports that you are not using a display attached to an NVIDIA GPU. This happens because Windows is using VMware’s SVGA device instead of NVIDIA vGPU.

Fix

Make NVIDIA vGPU the primary display adapter.

Use Windows screen resolution control panel to make the second display, identified as “2” and corresponding to NVIDIA vGPU, to be the active display and select the Show desktop only on 2 option. Click Apply to accept the configuration.

You may need to click on the Detect button for Windows to recognize the display connected to NVIDIA vGPU.

Note: If the VMware Horizon/View agent is installed in the VM, the NVIDIA GPU is automatically selected in preference to the SVGA device.

Status

Open

Ref. #

5.81. VM configured with more than one vGPU fails to initialize vGPU when booted

Description

Using the current VMware vCenter user interface, it is possible to configure a VM with more than one vGPU device. When booted, the VM boots in VMware SVGA mode and doesn’t load the NVIDIA driver. The additional vGPU devices are present in Windows Device Manager but display a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

Workaround

NVIDIA vGPU currently supports a single virtual GPU device per VM. Remove any additional vGPUs from the VM configuration before booting the VM.

Status

Open

Ref. #

5.82. A VM configured with both a vGPU and a passthrough GPU fails to start the passthrough GPU

Description

Using the current VMware vCenter user interface, it is possible to configure a VM with a vGPU device and a passthrough (direct path) GPU device. This is not a currently supported configuration for vGPU. The passthrough GPU appears in Windows Device Manager with a warning sign, and the following device status:

Windows has stopped this device because it has reported problems. (Code 43)

Workaround

Do not assign vGPU and passthrough GPUs to a VM simultaneously.

Status

Open

Ref. #

1735002

5.83. vGPU allocation policy fails when multiple VMs are started simultaneously

Description

If multiple VMs are started simultaneously, vSphere may not adhere to the placement policy currently in effect. For example, if the default placement policy (breadth-first) is in effect, and 4 physical GPUs are available with no resident vGPUs, then starting 4 VMs simultaneously should result in one vGPU on each GPU. In practice, more than one vGPU may end up resident on a GPU.

Workaround

Start VMs individually.

Status

Not an NVIDIA bug

Ref. #

200042690

5.84. Before Horizon agent is installed inside a VM, the Start menu’s sleep option is available

Description

When a VM is configured with a vGPU, the Sleep option remains available in the Windows Start menu. Sleep is not supported on vGPU and attempts to use it will lead to undefined behavior.

Workaround

Do not use Sleep with vGPU.

Installing the VMware Horizon agent will disable the Sleep option.

Status

Closed

Ref. #

200043405

5.85. vGPU-enabled VMs fail to start, nvidia-smi fails when VMs are configured with too high a proportion of the server’s memory.

Description

If vGPU-enabled VMs are assigned too high a proportion of the server’s total memory, the following errors occur:

  • One or more of the VMs may fail to start with the following error:
    The available Memory resources in the parent resource pool are insufficient for the operation
  • When run in the host shell, the nvidia-smi utility returns this error:
    -sh: can't fork

For example, on a server configured with 256G of memory, these errors may occur if vGPU-enabled VMs are assigned more than 243G of memory.

Workaround

Reduce the total amount of system memory assigned to the VMs.

Status

Closed

Ref. #

200060499

5.86. On reset or restart VMs fail to start with the error VMIOP: no graphics device is available for vGPU…

Description

On a system running a maximal configuration, that is, with the maximum number of vGPU VMs the server can support, some VMs might fail to start post a reset or restart operation.

Fix

Upgrade to ESXi 6.0 Update 1.

Status

Closed

Ref. #

200097546

5.87. nvidia-smi shows high GPU utilization for vGPU VMs with active Horizon sessions

Description

vGPU VMs with an active Horizon connection utilize a high percentage of the GPU on the ESXi host. The GPU utilization remains high for the duration of the Horizon session even if there are no active applications running on the VM.

Workaround

None

Status

Open

Partially resolved for Horizon 7.0.1:

  • For Blast connections, GPU utilization is no longer high.
  • For PCoIP connections, utilization remains high.

Ref. #

1735009

Notices

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, NVIDIA GRID, NVIDIA GRID vGPU, NVIDIA Maxwell, NVIDIA Pascal, NVIDIA Turing, NVIDIA Volta, GPUDirect, Quadro, and Tesla are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

1 The supported products are as follows:
  • vCS: NVIDIA Virtual Compute Server
  • Quadro vDWS: NVIDIA Quadro Virtual Data Center Workstation
  • GRID Virtual PC: NVIDIA GRID Virtual PC
  • GRID Virtual Applications: NVIDIA GRID Virtual Applications
2 N/A indicates that the deployment is not supported.
3vCS is supported only on Linux operating systems.
4GRID Virtual Applications is supported only on Windows operating systems.
5 This GPU is supported only in displayless mode. In displayless mode, local physical display connectors are disabled.