Host Based Networking
Follow this guide from the source GitHub repo at github.com/NVIDIA/doca-platform and moving to the docs/public/user-guides/host-trusted/use-cases/hbn/README.md
for better formatting of the code.
In this configuration NVIDIA Host Based Networking (HBN) is installed as a DPUService.
This guide should be run by cloning the repo from github.com/NVIDIA/doca-platform and moving to the docs/public/user-guides/hbn_only
directory.
The system is set up as described in the system prerequisites. The HBN DPUService has the additional requirements:
Software prerequisites
This guide uses the following tools which must be installed on the machine where the commands contained in this guide run.
kubectl
helm
envsubst
Kubernetes prerequisites
control plane setup is complete before starting this guide
CNI installed before starting this guide
worker nodes are not added until indicated by this guide
High-speed ports are used for secondary workload network and not for primary CNI
Virtual functions
A number of virtual functions (VFs) will be created on hosts when provisioning DPUs. Certain of these VFs are marked for specific usage:
The first VF (vf0) is used by provisioning components.
The remaining VFs are allocated by SR-IOV Device Plugin.
0. Required variables
The following variables are required by this guide. A sensible default is provided where it makes sense, but many will be specific to the target infrastructure.
Commands in this guide are run in the same directory that contains this readme.
Environment variables file
## Virtual IP used by the load balancer for
the DPU Cluster. Must be a reserved IP from the management subnet and not allocated by DHCP.
export DPUCLUSTER_VIP=
## DPU_P0 is the name of the first port of the DPU. This name must be the same on all worker nodes.
export DPU_P0=
## Interface on which the DPUCluster load balancer will listen. Should be the management interface
of the control plane node.
export DPUCLUSTER_INTERFACE=
## IP address to the NFS server used as storage for
the BFB.
export NFS_SERVER_IP=
## The repository URL for
the NVIDIA Helm chart registry.
## Usually this
is the NVIDIA Helm NGC registry. For development purposes, this
can be set to a different repository.
export HELM_REGISTRY_REPO_URL=https://helm.ngc.nvidia.com/nvidia/doca
## The repository URL for
the HBN container image.
## Usually this
is the NVIDIA NGC registry. For development purposes, this
can be set to a different repository.
export HBN_NGC_IMAGE_URL=nvcr.io/nvidia/doca/doca_hbn
## The DPF REGISTRY is the Helm repository URL where the DPF Operator Chart resides.
## Usually this
is the NVIDIA Helm NGC registry. For development purposes, this
can be set to a different repository.
export REGISTRY=https://helm.ngc.nvidia.com/nvidia/doca
## The DPF TAG is the version of the DPF components which will be deployed in this
guide.
export TAG=v25.7.0
## URL to the BFB used in the `bfb.yaml` and linked by the DPUSet.
export BFB_URL="https://content.mellanox.com/BlueField/BFBs/Ubuntu22.04/bf-bundle-3.1.0-76_25.07_ubuntu-22.04_prod.bfb"
Modify the variables in manifests/00-env-vars/envvars.env
to fit your environment, then source the file:
source manifests/00
-env-vars/envvars.env
1. DPF Operator installation
Create storage required by the DPF Operator
A number of environment variables must be set before running this command.
kubectl create ns dpf-operator-system
cat manifests/01
-dpf-operator-installation/*.yaml | envsubst | kubectl apply -f -
This deploys the following objects:
PersistentVolume and PersistentVolumeClaim for the provisioning controller
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: bfb-pv
spec:
capacity:
storage: 10Gi
volumeMode: Filesystem
accessModes:
- ReadWriteMany
nfs:
path: /mnt/dpf_share/bfb
server: $NFS_SERVER_IP
persistentVolumeReclaimPolicy: Delete
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: bfb-pvc
namespace: dpf-operator-system
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 10Gi
volumeMode: Filesystem
storageClassName: ""
Additional Dependencies
Before deploying the DPF Operator, ensure that Helm is properly configured according to the Helm prerequisites.
This is a critical prerequisite step that must be completed for the DPF Operator to function properly.
Deploy the DPF Operator
A number of environment variables must be set before running this command.
HTTP Registry (default)
If the $REGISTRY is an HTTP Registry (default value) use this command:
helm repo add --force-update dpf-repository ${REGISTRY}
helm repo update
helm upgrade --install -n dpf-operator-system dpf-operator dpf-repository/dpf-operator --version=$TAG
OCI Registry
For development purposes, if the $REGISTRY is an OCI Registry use this command:
helm upgrade --install -n dpf-operator-system dpf-operator $REGISTRY/dpf-operator --version=$TAG
Verification
These verification commands may need to be run multiple times to ensure the condition is met.
Verify the DPF Operator installation with:
## Ensure the DPF Operator deployment is available.
kubectl rollout status deployment --namespace dpf-operator-system dpf-operator-controller-manager
## Ensure all pods in the DPF Operator system are ready.
kubectl wait --for
=condition=ready --namespace dpf-operator-system pods --all
2. DPF system installation
This section involves creating the DPF system components and some basic infrastructure required for a functioning DPF-enabled cluster.
Deploy the DPF System components
A number of environment variables must be set before running this command.
kubectl create ns dpu-cplane-tenant1
cat manifests/02
-dpf-system-installation/*.yaml | envsubst | kubectl apply -f -
This will create the following objects:
DPF Operator to install the DPF System components
---
apiVersion: operator.dpu.nvidia.com/v1alpha1
kind: DPFOperatorConfig
metadata:
name: dpfoperatorconfig
namespace: dpf-operator-system
spec:
provisioningController:
bfbPVCName: "bfb-pvc"
dmsTimeout: 900
kamajiClusterManager:
disable: false
DPUCluster to serve as Kubernetes control plane for DPU nodes
---
apiVersion: provisioning.dpu.nvidia.com/v1alpha1
kind: DPUCluster
metadata:
name: dpu-cplane-tenant1
namespace: dpu-cplane-tenant1
spec:
type: kamaji
maxNodes: 10
clusterEndpoint:
# deploy keepalived instances on the nodes that match the given nodeSelector.
keepalived:
# interface
on which keepalived will listen. Should be the oob interface
of the control plane node.
interface
: $DPUCLUSTER_INTERFACE
# Virtual IP reserved for
the DPU Cluster load balancer. Must not be allocatable by DHCP.
vip: $DPUCLUSTER_VIP
# virtualRouterID must be in range [1
,255
], make sure the given virtualRouterID does not duplicate with any existing keepalived process running on the host
virtualRouterID: 126
nodeSelector:
node-role.kubernetes.io/control-plane: ""
Verification
These verification commands may need to be run multiple times to ensure the condition is met.
Verify the DPF System with:
## Ensure the provisioning and DPUService controller manager deployments are available.
kubectl rollout status deployment --namespace dpf-operator-system dpf-provisioning-controller-manager dpuservice-controller-manager
## Ensure all other deployments in the DPF Operator system are Available.
kubectl rollout status deployment --namespace dpf-operator-system
## Ensure the DPUCluster is ready for
nodes to join.
kubectl wait --for
=condition=ready --namespace dpu-cplane-tenant1 dpucluster --all
3. Enable accelerated interfaces
Traffic can be routed through HBN on the worker node by mounting the DPU physical interface into a pod.
Install Multus and SRIOV Network Operator using NVIDIA Network Operator
helm repo add nvidia https://helm.ngc.nvidia.com/nvidia --force-update
helm upgrade --no-hooks --install --create-namespace --namespace nvidia-network-operator network-operator nvidia/network-operator --version 25.4
.0
-f ./manifests/03
-enable-accelerated-interfaces/helm-values/network-operator.yml
NVIDIA Network Operator Helm values
nfd:
enabled: false
deployNodeFeatureRules: false
sriovNetworkOperator:
enabled: true
sriov-network-operator:
operator:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: node-role.kubernetes.io/master
operator: Exists
- matchExpressions:
- key: node-role.kubernetes.io/control-plane
operator: Exists
crds:
enabled: true
sriovOperatorConfig:
deploy: true
configDaemonNodeSelector: null
operator:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: node-role.kubernetes.io/master
operator: Exists
- matchExpressions:
- key: node-role.kubernetes.io/control-plane
operator: Exists
Apply the NICClusterConfiguration and SriovNetworkNodePolicy
cat manifests/03
-enable-accelerated-interfaces/*.yaml | envsubst | kubectl apply -f -
This will deploy the following objects:
NICClusterPolicy for the NVIDIA Network Operator
---
apiVersion: mellanox.com/v1alpha1
kind: NicClusterPolicy
metadata:
name: nic-cluster-policy
spec:
secondaryNetwork:
multus:
image: multus-cni
imagePullSecrets: []
repository: ghcr.io/k8snetworkplumbingwg
version: v3.9.3
SriovNetworkNodePolicy for the SR-IOV Network Operator
---
apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
name: bf3-p0-vfs
namespace: nvidia-network-operator
spec:
nicSelector:
deviceID: "a2dc"
vendor: "15b3"
pfNames:
- $DPU_P0#2
-45
nodeSelector:
node-role.kubernetes.io/worker: ""
numVfs: 46
resourceName: bf3-p0-vfs
isRdma: true
externallyManaged: true
deviceType: netdevice
linkType: eth
Verification
These verification commands may need to be run multiple times to ensure the condition is met.
Verify the DPF System with:
## Ensure the provisioning and DPUService controller manager deployments are available.
kubectl wait --for
=condition=Ready --namespace nvidia-network-operator pods --all
## Expect the following Daemonsets to be successfully rolled out.
kubectl rollout status daemonset --namespace nvidia-network-operator kube-multus-ds sriov-network-config-daemon sriov-device-plugin
4. DPU Provisioning and Service Installation
In this step we deploy our DPUs and the services that will run on them.
The user is expected to create a DPUDeployment object that reflects a set of DPUServices that should run on a set of DPUs.
If you want to learn more about
DPUDeployments
, feel free to check the DPUDeployment documentation.
Create the DPUDeployment, DPUServiceConfig, DPUServiceTemplate and other necessary objects
A number of environment variables must be set before running this command.
cat manifests/04
-dpudeployment-installation/*.yaml | envsubst | kubectl apply -f -
This will deploy the following objects:
BFB to download Bluefield Bitstream to a shared volume
---
apiVersion: provisioning.dpu.nvidia.com/v1alpha1
kind: BFB
metadata:
name: bf-bundle
namespace: dpf-operator-system
spec:
url: $BFB_URL
HBN DPUFlavor to correctly configure the DPUs on provisioning
---
apiVersion: provisioning.dpu.nvidia.com/v1alpha1
kind: DPUFlavor
metadata:
name: dpf-provisioning-hbn
namespace: dpf-operator-system
spec:
bfcfgParameters:
- UPDATE_ATF_UEFI=yes
- UPDATE_DPU_OS=yes
- WITH_NIC_FW_UPDATE=yes
configFiles:
- operation: override
path: /etc/mellanox/mlnx-bf.conf
permissions: "0644"
raw: |
ALLOW_SHARED_RQ="no"
IPSEC_FULL_OFFLOAD="no"
ENABLE_ESWITCH_MULTIPORT="yes"
- operation: override
path: /etc/mellanox/mlnx-ovs.conf
permissions: "0644"
raw: |
CREATE_OVS_BRIDGES="no"
OVS_DOCA="yes"
- operation: override
path: /etc/mellanox/mlnx-sf.conf
permissions: "0644"
raw: ""
grub:
kernelParameters:
- console=hvc0
- console=ttyAMA0
- earlycon=pl011,0x13010000
- fixrttc
- net.ifnames=0
- biosdevname=0
- iommu.passthrough=1
- cgroup_no_v1=net_prio,net_cls
- hugepagesz=2048kB
- hugepages=3072
nvconfig:
- device: '*'
parameters:
- PF_BAR2_ENABLE=0
- PER_PF_NUM_SF=1
- PF_TOTAL_SF=20
- PF_SF_BAR_SIZE=10
- NUM_PF_MSIX_VALID=0
- PF_NUM_PF_MSIX_VALID=1
- PF_NUM_PF_MSIX=228
- INTERNAL_CPU_MODEL=1
- INTERNAL_CPU_OFFLOAD_ENGINE=0
- SRIOV_EN=1
- NUM_OF_VFS=46
- LAG_RESOURCE_ALLOCATION=1
ovs:
rawConfigScript: |
_ovs-vsctl() {
ovs-vsctl --no-wait --timeout 15
"$@"
}
_ovs-vsctl set Open_vSwitch . other_config:doca-init=true
_ovs-vsctl set Open_vSwitch . other_config:dpdk-max-memzones=50000
_ovs-vsctl set Open_vSwitch . other_config:hw-offload=true
_ovs-vsctl set Open_vSwitch . other_config:pmd-quiet-idle=true
_ovs-vsctl set Open_vSwitch . other_config:max-idle=20000
_ovs-vsctl set Open_vSwitch . other_config:max-revalidator=5000
_ovs-vsctl --if
-exists del-br ovsbr1
_ovs-vsctl --if
-exists del-br ovsbr2
_ovs-vsctl --may-exist add-br br-sfc
_ovs-vsctl set bridge br-sfc datapath_type=netdev
_ovs-vsctl set bridge br-sfc fail_mode=secure
_ovs-vsctl --may-exist add-port br-sfc p0
_ovs-vsctl set Interface p0 type=dpdk
_ovs-vsctl set Interface p0 mtu_request=9216
_ovs-vsctl set Port p0 external_ids:dpf-type=physical
DPUDeployment to provision DPUs on worker nodes
---
apiVersion: svc.dpu.nvidia.com/v1alpha1
kind: DPUDeployment
metadata:
name: hbn-only
namespace: dpf-operator-system
spec:
dpus:
bfb: bf-bundle
flavor: dpf-provisioning-hbn
dpuSets:
- nameSuffix: "dpuset1"
nodeSelector:
matchLabels:
feature.node.kubernetes.io/dpu-enabled: "true"
services:
doca-hbn:
serviceTemplate: doca-hbn
serviceConfiguration: doca-hbn
serviceChains:
switches:
- ports:
- serviceInterface:
matchLabels:
uplink: p0
- service:
name: doca-hbn
interface
: p0_if
- ports:
- serviceInterface:
matchLabels:
uplink: p1
- service:
name: doca-hbn
interface
: p1_if
- ports:
- serviceInterface:
matchLabels:
vf: pf0vf10
- service:
name: doca-hbn
interface
: pf0vf10_if
- ports:
- serviceInterface:
matchLabels:
vf: pf1vf10
- service:
name: doca-hbn
interface
: pf1vf10_if
DPUServiceConfig and DPUServiceTemplate to deploy HBN workloads to the DPUs
---
apiVersion: svc.dpu.nvidia.com/v1alpha1
kind: DPUServiceConfiguration
metadata:
name: doca-hbn
namespace: dpf-operator-system
spec:
deploymentServiceName: "doca-hbn"
serviceConfiguration:
serviceDaemonSet:
annotations:
k8s.v1.cni.cncf.io/networks: |-
[
{"name"
: "iprequest"
, "interface"
: "ip_lo"
, "cni-args"
: {"poolNames"
: ["loopback"
], "poolType"
: "cidrpool"
}},
{"name"
: "iprequest"
, "interface"
: "ip_pf0vf10"
, "cni-args"
: {"poolNames"
: ["pool1"
], "poolType"
: "cidrpool"
, "allocateDefaultGateway"
: true
}},
{"name"
: "iprequest"
, "interface"
: "ip_pf1vf10"
, "cni-args"
: {"poolNames"
: ["pool2"
], "poolType"
: "cidrpool"
, "allocateDefaultGateway"
: true
}}
]
helmChart:
values:
configuration:
perDPUValuesYAML: |
- hostnamePattern: "*"
values:
bgp_peer_group: hbn
vrf1: RED
vrf2: BLUE
l3vni1: 100001
l3vni2: 100002
- hostnamePattern: "worker1*"
values:
bgp_autonomous_system: 65101
- hostnamePattern: "worker2*"
values:
bgp_autonomous_system: 65201
startupYAMLJ2: |
- header:
model: bluefield
nvue-api-version: nvue_v1
rev-id: 1.0
version: HBN 2.4
.0
- set:
evpn:
enable: on
route-advertise: {}
interface
:
lo:
ip:
address:
{{ ipaddresses.ip_lo.ip }}/32
: {}
type: loopback
p0_if,p1_if,pf0vf10_if,pf1vf10_if:
type: swp
link:
mtu: 9000
pf0vf10_if:
ip:
address:
{{ ipaddresses.ip_pf0vf10.cidr }}: {}
vrf: {{ config.vrf1 }}
pf1vf10_if:
ip:
address:
{{ ipaddresses.ip_pf1vf10.cidr }}: {}
vrf: {{ config.vrf2 }}
nve:
vxlan:
arp-nd-suppress: on
enable: on
source:
address: {{ ipaddresses.ip_lo.ip }}
router:
bgp:
enable: on
graceful-restart:
mode: full
vrf:
default
:
router:
bgp:
address-family:
ipv4-unicast:
enable: on
redistribute:
connected:
enable: on
multipaths:
ebgp: 16
l2vpn-evpn:
enable: on
autonomous-system: {{ config.bgp_autonomous_system }}
enable: on
neighbor:
p0_if:
peer-group: {{ config.bgp_peer_group }}
type: unnumbered
address-family:
l2vpn-evpn:
enable: on
add-path-tx: off
p1_if:
peer-group: {{ config.bgp_peer_group }}
type: unnumbered
address-family:
l2vpn-evpn:
enable: on
add-path-tx: off
path-selection:
multipath:
aspath-ignore: on
peer-group:
{{ config.bgp_peer_group }}:
address-family:
ipv4-unicast:
enable: on
l2vpn-evpn:
enable: on
remote-as: external
router-id: {{ ipaddresses.ip_lo.ip }}
{{ config.vrf1 }}:
evpn:
enable: on
vni:
{{ config.l3vni1 }}: {}
router:
bgp:
address-family:
ipv4-unicast:
enable: on
redistribute:
connected:
enable: on
route-export:
to-evpn:
enable: on
autonomous-system: {{ config.bgp_autonomous_system }}
enable: on
{{ config.vrf2 }}:
evpn:
enable: on
vni:
{{ config.l3vni2 }}: {}
router:
bgp:
address-family:
ipv4-unicast:
enable: on
redistribute:
connected:
enable: on
route-export:
to-evpn:
enable: on
autonomous-system: {{ config.bgp_autonomous_system }}
enable: on
interfaces:
- name: p0_if
network: mybrhbn
- name: p1_if
network: mybrhbn
- name: pf0vf10_if
network: mybrhbn
- name: pf1vf10_if
network: mybrhbn
---
apiVersion: svc.dpu.nvidia.com/v1alpha1
kind: DPUServiceTemplate
metadata:
name: doca-hbn
namespace: dpf-operator-system
spec:
deploymentServiceName: "doca-hbn"
helmChart:
source:
repoURL: $HELM_REGISTRY_REPO_URL
version: 1.0
.3
chart: doca-hbn
values:
image:
repository: $HBN_NGC_IMAGE_URL
tag: 3.1
.0
-doca3.1.0
resources:
memory: 6Gi
nvidia.com/bf_sf: 4
DPUServiceInterfaces for physical ports on the DPU
---
apiVersion: svc.dpu.nvidia.com/v1alpha1
kind: DPUServiceInterface
metadata:
name: p0
namespace: dpf-operator-system
spec:
template:
spec:
template:
metadata:
labels:
uplink: "p0"
spec:
interfaceType: physical
physical:
interfaceName: p0
---
apiVersion: svc.dpu.nvidia.com/v1alpha1
kind: DPUServiceInterface
metadata:
name: p1
namespace: dpf-operator-system
spec:
template:
spec:
template:
metadata:
labels:
uplink: "p1"
spec:
interfaceType: physical
physical:
interfaceName: p1
---
apiVersion: svc.dpu.nvidia.com/v1alpha1
kind: DPUServiceInterface
metadata:
name: pf0vf10-rep
namespace: dpf-operator-system
spec:
template:
spec:
template:
metadata:
labels:
vf: "pf0vf10"
spec:
interfaceType: vf
vf:
parentInterfaceRef: p0
pfID: 0
vfID: 10
---
apiVersion: svc.dpu.nvidia.com/v1alpha1
kind: DPUServiceInterface
metadata:
name: pf1vf10-rep
namespace: dpf-operator-system
spec:
template:
spec:
template:
metadata:
labels:
vf: "pf1vf10"
spec:
interfaceType: vf
vf:
parentInterfaceRef: p1
pfID: 1
vfID: 10
DPUServiceIPAM to set up IP Address Management on the DPUCluster
---
apiVersion: svc.dpu.nvidia.com/v1alpha1
kind: DPUServiceIPAM
metadata:
name: pool1
namespace: dpf-operator-system
spec:
ipv4Network:
network: "10.0.121.0/24"
gatewayIndex: 2
prefixSize: 29
---
apiVersion: svc.dpu.nvidia.com/v1alpha1
kind: DPUServiceIPAM
metadata:
name: pool2
namespace: dpf-operator-system
spec:
ipv4Network:
network: "10.0.122.0/24"
gatewayIndex: 2
prefixSize: 29
DPUServiceIPAM for the loopback interface in HBN
---
apiVersion: svc.dpu.nvidia.com/v1alpha1
kind: DPUServiceIPAM
metadata:
name: loopback
namespace: dpf-operator-system
spec:
ipv4Network:
network: "11.0.0.0/24"
prefixSize: 32
Verification
These verification commands may need to be run multiple times to ensure the condition is met.
Note that the DPUService name will have a random suffix. For example, doca-hbn-l2xsl
.
Verify the DPU and Service installation with:
## Ensure the DPUServices are created and have been reconciled.
kubectl wait --for
=condition=ApplicationsReconciled --namespace dpf-operator-system dpuservices -l svc.dpu.nvidia.com/owned-by-dpudeployment=dpf-operator-system_hbn-only
## Ensure the DPUServiceIPAMs have been reconciled
kubectl wait --for
=condition=DPUIPAMObjectReconciled --namespace dpf-operator-system dpuserviceipam --all
## Ensure the DPUServiceInterfaces have been reconciled
kubectl wait --for
=condition=ServiceInterfaceSetReconciled --namespace dpf-operator-system dpuserviceinterface --all
## Ensure the DPUServiceChains have been reconciled
kubectl wait --for
=condition=ServiceChainSetReconciled --namespace dpf-operator-system dpuservicechain --all
5. Test traffic
Add worker nodes to the cluster
At this point workers should be added to the cluster. Each worker node should be configured in line with the prerequisites. As workers are added to the cluster DPUs will be provisioned and DPUServices will begin to be spun up.
You can verify the status of the DPUDeployment and its components with the following command:
$ kubectl -n dpf-operator-system exec deploy/dpf-operator-controller-manager -- /dpfctl describe dpudeployments
NAME NAMESPACE STATUS REASON SINCE MESSAGE
DPFOperatorConfig/dpfoperatorconfig dpf-operator-system Ready: True Success 2h
└─DPUDeployments
└─DPUDeployment/hbn-only dpf-operator-system Ready: True Success 2h
├─DPUServiceChains
│ └─DPUServiceChain/hbn-only-wkdhz dpf-operator-system Ready: True Success 2h
├─DPUSets
│ └─DPUSet/hbn-only-dpuset1 dpf-operator-system
│ ├─BFB/bf-bundle dpf-operator-system Ready: True Ready 2h File: bf-bundle-3.1
.0
-53_25.07_ubuntu-22
.04_prod.bfb, DOCA: 3.1
.0
│ └─DPUs
│ └─2
DPUs... dpf-operator-system Ready: True DPUReady 2h See dpu-node-mt2310xz03lr-mt2310xz03lr, dpu-node-mt2310xz03m2-mt2310xz03m2
└─Services
├─DPUServiceTemplates
│ └─DPUServiceTemplate/doca-hbn dpf-operator-system Ready: True Success 2h
└─DPUServices
└─DPUService/doca-hbn-l2xsl dpf-operator-system Ready: True Success 2h
Deploy test pods
kubectl apply -f manifests/05
-test-traffic
HBN functionality can be tested by pinging between the pods and services deployed in the default namespace.
TODO: Add specific user commands to test traffic.
This section describes how to clean up the DPF components installed in this guide. It is recommended to run this section only after the DPF Operator and DPUCluster are no longer needed.
Delete DPF CNI acceleration components
kubectl delete -f manifests/03
-enable-accelerated-interfaces --wait
helm uninstall -n nvidia-network-operator network-operator --wait
Delete the DPF Operator system and DPF Operator
kubectl delete -n dpf-operator-system dpfoperatorconfig dpfoperatorconfig --wait
helm uninstall -n dpf-operator-system dpf-operator --wait
Delete DPF Operator PVC
kubectl -n dpf-operator-system delete pvc bfb-pvc
kubectl delete pv bfb-pv
Note: there can be a race condition with deleting the underlying Kamaji cluster which runs the DPU cluster control plane in this guide. If that happens it may be necessary to remove finalizers manually from DPUCluster
and Datastore
objects.